Asymptotic Normality of Parameter Estimators for Mixed Fractional Brownian Motion with Trend

被引:1
作者
Ralchenko, Kostiantyn [1 ]
Yakovliev, Mykyta [1 ]
机构
[1] Taras Shevchenko Natl Univ Kyiv, Dept Probabil Stat & Actuarial Math, 64-13 Volodymyrska St, UA-01601 Kiev, Ukraine
关键词
Fractional Brownian motion; Wiener process; mixed model; asymptotic distribu-tion; EQUITY WARRANTS; PRICING MODEL;
D O I
10.17713/ajs.v52iSI.1770
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We investigate the mixed fractional Brownian motion of the form Xt = & theta;t+& sigma;Wt+& kappa;BtH, driven by a standard Brownian motion W and a fractional Brownian motion BH with Hurst parameter H. We consider strongly consistent estimators of unknown model param-eters (& theta;, H, & sigma;, & kappa;) based on the equidistant observations of a trajectory. Joint asymptotic normality of these estimators is proved for H & ISIN; (0, 21).
引用
收藏
页码:127 / 148
页数:22
相关论文
共 50 条
[31]   ASYMPTOTIC BEHAVIOR OF WEIGHTED QUADRATIC AND CUBIC VARIATIONS OF FRACTIONAL BROWNIAN MOTION [J].
Nourdin, Ivan .
ANNALS OF PROBABILITY, 2008, 36 (06) :2159-2175
[32]   Wavelet Packets of Fractional Brownian Motion: Asymptotic Analysis and Spectrum Estimation [J].
Atto, Abdourrahmane Mahamane ;
Pastor, Dominique ;
Mercier, Gregoire .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (09) :4741-4753
[33]   Asymptotic inference for stochastic differential equations driven by fractional Brownian motion [J].
Nakajima, Shohei ;
Shimizu, Yasutaka .
JAPANESE JOURNAL OF STATISTICS AND DATA SCIENCE, 2023, 6 (01) :431-455
[34]   On the parameter estimations for geometric mixed subfractional Brownian motion model [J].
Sun, Xiaoxia ;
Wang, Bing ;
Zheng, Shiyi .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2025,
[35]   Nonparametric estimation of trend for stochastic differential equations driven by fractional Brownian motion [J].
Mishra M.N. ;
Prakasa Rao B.L.S. .
Statistical Inference for Stochastic Processes, 2011, 14 (2) :101-109
[36]   Estimation of the Hurst parameter for fractional Brownian motion using the CMARS method [J].
Yerlikaya-Ozkurt, F. ;
Vardar-Acar, C. ;
Yolcu-Okur, Y. ;
Weber, G. -W. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 259 :843-850
[37]   Solutions of linear and semilinear distributed parameter equations with a fractional Brownian motion [J].
Duncan, T. E. ;
Maslowski, B. ;
Pasik-Duncan, B. .
INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2009, 23 (02) :114-130
[38]   Fractional Brownian motion with zero Hurst parameter: a rough volatility viewpoint [J].
Neuman, Eyal ;
Rosenbaum, Mathieu .
ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2018, 23
[39]   Convergence rate of CLT for the estimation of Hurst parameter of fractional Brownian motion [J].
Kim, Yoon Tae ;
Park, Hyun Suk .
STATISTICS & PROBABILITY LETTERS, 2015, 105 :181-188
[40]   On Drift Parameter Estimation in Models with Fractional Brownian Motion by Discrete Observations [J].
Mishura, Yuliya ;
Ralchenko, Kostiantyn .
AUSTRIAN JOURNAL OF STATISTICS, 2014, 43 (03) :217-228