Asymptotic Normality of Parameter Estimators for Mixed Fractional Brownian Motion with Trend

被引:1
作者
Ralchenko, Kostiantyn [1 ]
Yakovliev, Mykyta [1 ]
机构
[1] Taras Shevchenko Natl Univ Kyiv, Dept Probabil Stat & Actuarial Math, 64-13 Volodymyrska St, UA-01601 Kiev, Ukraine
关键词
Fractional Brownian motion; Wiener process; mixed model; asymptotic distribu-tion; EQUITY WARRANTS; PRICING MODEL;
D O I
10.17713/ajs.v52iSI.1770
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We investigate the mixed fractional Brownian motion of the form Xt = & theta;t+& sigma;Wt+& kappa;BtH, driven by a standard Brownian motion W and a fractional Brownian motion BH with Hurst parameter H. We consider strongly consistent estimators of unknown model param-eters (& theta;, H, & sigma;, & kappa;) based on the equidistant observations of a trajectory. Joint asymptotic normality of these estimators is proved for H & ISIN; (0, 21).
引用
收藏
页码:127 / 148
页数:22
相关论文
共 50 条
[21]   Parameter identification in mixed Brownian-fractional Brownian motions using Powell's optimization algorithm [J].
Zhang, Pu ;
Sun, Qi ;
Xiao, Wei-Lin .
ECONOMIC MODELLING, 2014, 40 :314-319
[22]   Is it Brownian or fractional Brownian motion? [J].
Li, Meiyu ;
Gencay, Ramazan ;
Xue, Yi .
ECONOMICS LETTERS, 2016, 145 :52-55
[23]   Spectral characterization of the quadratic variation of mixed Brownian-fractional Brownian motion [J].
Azmoodeh E. ;
Valkeila E. .
Statistical Inference for Stochastic Processes, 2013, 16 (2) :97-112
[24]   Exact confidence intervals for the Hurst parameter of a fractional Brownian motion [J].
Breton, Jean-Christophe ;
Nourdin, Ivan ;
Peccati, Giovanni .
ELECTRONIC JOURNAL OF STATISTICS, 2009, 3 :416-425
[25]   Parameter identification for a scalar linear system with fractional Brownian motion [J].
Duncan, TE ;
Pasik-Duncan, B .
ADAPTATION AND LEARNING IN CONTROL AND SIGNAL PROCESSING 2001, 2002, :383-387
[26]   Fractional Brownian Motion with Variable Hurst Parameter: Definition and Properties [J].
Ryvkina, Jelena .
JOURNAL OF THEORETICAL PROBABILITY, 2015, 28 (03) :866-891
[27]   Fractional Brownian Motion with Variable Hurst Parameter: Definition and Properties [J].
Jelena Ryvkina .
Journal of Theoretical Probability, 2015, 28 :866-891
[28]   Boundary non-crossing probabilities for fractional Brownian motion with trend [J].
Hashorva, Enkelejd ;
Mishura, Yuliya ;
Seleznjev, Oleg .
STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2015, 87 (06) :946-965
[29]   On some estimators of the Hurst index of the solution of SDE driven by a fractional Brownian motion [J].
Kubilius, K. ;
Skorniakov, V. .
STATISTICS & PROBABILITY LETTERS, 2016, 109 :159-167
[30]   Asymptotic inference for stochastic differential equations driven by fractional Brownian motion [J].
Shohei Nakajima ;
Yasutaka Shimizu .
Japanese Journal of Statistics and Data Science, 2023, 6 :431-455