Asymptotic Normality of Parameter Estimators for Mixed Fractional Brownian Motion with Trend

被引:1
|
作者
Ralchenko, Kostiantyn [1 ]
Yakovliev, Mykyta [1 ]
机构
[1] Taras Shevchenko Natl Univ Kyiv, Dept Probabil Stat & Actuarial Math, 64-13 Volodymyrska St, UA-01601 Kiev, Ukraine
关键词
Fractional Brownian motion; Wiener process; mixed model; asymptotic distribu-tion; EQUITY WARRANTS; PRICING MODEL;
D O I
10.17713/ajs.v52iSI.1770
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We investigate the mixed fractional Brownian motion of the form Xt = & theta;t+& sigma;Wt+& kappa;BtH, driven by a standard Brownian motion W and a fractional Brownian motion BH with Hurst parameter H. We consider strongly consistent estimators of unknown model param-eters (& theta;, H, & sigma;, & kappa;) based on the equidistant observations of a trajectory. Joint asymptotic normality of these estimators is proved for H & ISIN; (0, 21).
引用
收藏
页码:127 / 148
页数:22
相关论文
共 50 条
  • [1] Asymptotic Normality of the Estimators for Fractional Brownian Motions with Discrete Data
    Sun, Lin
    Yu, Xiaojian
    Guan, Xuewei
    Meng, Qinghao
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [2] Asymptotic Properties of Parameter Estimators in Vasicek Model Driven by Tempered Fractional Brownian Motion
    Mishura, Yuliya
    Ralchenko, Kostiantyn
    Dehtiar, Olena
    AUSTRIAN JOURNAL OF STATISTICS, 2025, 54 (01) : 61 - 81
  • [3] ASYMPTOTIC PROPERTIES OF NON-STANDARD DRIFT PARAMETER ESTIMATORS IN THE MODELS INVOLVING FRACTIONAL BROWNIAN MOTION
    Khlifa, Meriem Bel Hadj
    Mishura, Yuliya
    Zili, Mounir
    THEORY OF PROBABILITY AND MATHEMATICAL STATISTICS, 2016, 94 : 73 - 84
  • [4] Maximum-likelihood estimators in the mixed fractional Brownian motion
    Xiao, Wei-Lin
    Zhang, Wei-Guo
    Zhang, Xi-Li
    STATISTICS, 2011, 45 (01) : 73 - 85
  • [5] Optimization of small deviation for mixed fractional Brownian motion with trend
    MacKay, Anne
    Melnikov, Alexander
    Mishura, Yuliya
    STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2018, 90 (07) : 1087 - 1110
  • [6] Asymptotic expansion of the quadratic variation of a mixed fractional Brownian motion
    Tudor, Ciprian A.
    Yoshida, Nakahiro
    STATISTICAL INFERENCE FOR STOCHASTIC PROCESSES, 2020, 23 (02) : 435 - 463
  • [7] Asymptotic expansion of the quadratic variation of a mixed fractional Brownian motion
    Ciprian A. Tudor
    Nakahiro Yoshida
    Statistical Inference for Stochastic Processes, 2020, 23 : 435 - 463
  • [8] Estimators for the long-memory parameter in LARCH models, and fractional Brownian motion
    Levine M.
    Torres S.
    Viens F.
    Statistical Inference for Stochastic Processes, 2009, 12 (3) : 221 - 250
  • [9] Asymptotic normality of least squares type estimators to stochastic differential equations driven by fractional Brownian motions
    Nakajima, Shohei
    Shimizu, Yasutaka
    STATISTICS & PROBABILITY LETTERS, 2022, 187
  • [10] Parameter estimation for fractional mixed fractional Brownian motion based on discrete observations
    Ralchenko, Kostiantyn
    Yakovliev, Mykyta
    MODERN STOCHASTICS-THEORY AND APPLICATIONS, 2024, 11 (01): : 1 - 29