Block Sparse Channel Estimation based on Residual Difference and Deep Learning for Wideband MmWave Massive MIMO

被引:1
作者
Tang, Rongshun
Qi, Chenhao [1 ]
Zhang, Pengju
机构
[1] Southeast Univ, Natl Mobile Commun Res Lab, Nanjing, Peoples R China
来源
2023 IEEE 97TH VEHICULAR TECHNOLOGY CONFERENCE, VTC2023-SPRING | 2023年
基金
中国国家自然科学基金;
关键词
Block sparse; channel estimation; deep learning; mmWave communications; sparse recovery; SYSTEMS;
D O I
10.1109/VTC2023-Spring57618.2023.10200898
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Time-domain channel estimation for wideband millimeter wave (mmWave) MIMO OFDM systems is considered. To mitigate the overfitting of the existing time-domain channel estimation exploiting block sparsity (TDCEBS) scheme, we propose a block sparse channel estimation exploiting residual difference (BSCERD) scheme, where we first compute the difference of the residual power for every two adjacent iterations, and then determine a threshold to indicate the convergence of the iterations. Moreover, to improve the global optimality and reduce the time overhead of compressive sensing, a block sparse channel estimation based on deep learning (BSCEDL) scheme is proposed to determine the indices of the nonzero blocks simultaneously. We exploit the QuaDRiGa to assess the efficacy of the schemes proposed. Simulation results show that both BSCERD and BSCEDL outperform TDCEBS, while BSCEDL is better than BSCERD in performance and can achieve much lower time overhead.
引用
收藏
页数:6
相关论文
共 50 条
[31]   Wideband mmWave Channel Estimation for Hybrid Massive MIMO With Low-Precision ADCs [J].
Wang, Yucheng ;
Xu, Wei ;
Zhang, Hua ;
You, Xiaohu .
IEEE WIRELESS COMMUNICATIONS LETTERS, 2019, 8 (01) :285-288
[32]   Beam Squint and Channel Estimation for Wideband mmWave Massive MIMO-OFDM Systems [J].
Wang, Bolei ;
Jian, Mengnan ;
Gao, Feifei ;
Li, Geoffrey Ye ;
Lin, Hai .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2019, 67 (23) :5893-5908
[33]   NBNet-Based Channel Estimation for Beamspace mmWave Massive MIMO Systems [J].
Li, Jun ;
Zhang, Xuyi ;
Jiang, Xinyan ;
Zheng, Wenjing ;
He, Bo ;
Cui, Endong .
PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING, ICDSP 2024, 2024, :77-82
[34]   Adaptive Block Sparse Backtracking-Based Channel Estimation for Massive MIMO-OTFS Systems [J].
Wang, Han ;
Chen, Qiulin ;
Wang, Xianpeng ;
Du, Wencai ;
Li, Xingwang ;
Nallanathan, Arumugam .
IEEE INTERNET OF THINGS JOURNAL, 2025, 12 (01) :673-682
[35]   Sparse angular reciprocity learning for massive MIMO channel estimation [J].
Fang, Xingchen ;
Ji, Chen ;
Shang, Hekun ;
Dai, Jisheng .
DIGITAL SIGNAL PROCESSING, 2023, 137
[36]   Deep unfolding based channel estimation for wideband terahertz near-field massive MIMO systems [J].
Gao, Jiabao ;
Chen, Xiaoming ;
Li, Geoffrey Ye .
FRONTIERS OF INFORMATION TECHNOLOGY & ELECTRONIC ENGINEERING, 2024, 25 (08) :1162-1172
[37]   Deep Learning-Based Channel Estimation for Massive MIMO Systems with Pilot Contamination [J].
Hirose H. ;
Ohtsuki T. ;
Gui G. .
IEEE Open Journal of Vehicular Technology, 2021, 2 :67-77
[38]   Deep Learning Based Downlink Channel Covariance Estimation for FDD Massive MIMO Systems [J].
Zou Linfu ;
Pan Zhiwen ;
Jiang Huilin ;
Liu Na ;
You Xiaohu .
IEEE COMMUNICATIONS LETTERS, 2021, 25 (07) :2275-2279
[39]   Channel estimation and pilot reduction for mmWave massive MIMO systems using deep neural networks [J].
Tamiru, Biniam ;
Jee, Jeongju ;
Park, Hyuncheol .
ICT EXPRESS, 2024, 10 (04) :798-803
[40]   Channel Estimation-Free Deep Direct Beamforming With Low Complexity in mmWave Massive MIMO [J].
Hong, Ziyao ;
Li, Ting ;
Li, Fei ;
Ju, Renjie .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2021, 70 (08) :7790-7802