Block Sparse Channel Estimation based on Residual Difference and Deep Learning for Wideband MmWave Massive MIMO

被引:1
作者
Tang, Rongshun
Qi, Chenhao [1 ]
Zhang, Pengju
机构
[1] Southeast Univ, Natl Mobile Commun Res Lab, Nanjing, Peoples R China
来源
2023 IEEE 97TH VEHICULAR TECHNOLOGY CONFERENCE, VTC2023-SPRING | 2023年
基金
中国国家自然科学基金;
关键词
Block sparse; channel estimation; deep learning; mmWave communications; sparse recovery; SYSTEMS;
D O I
10.1109/VTC2023-Spring57618.2023.10200898
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Time-domain channel estimation for wideband millimeter wave (mmWave) MIMO OFDM systems is considered. To mitigate the overfitting of the existing time-domain channel estimation exploiting block sparsity (TDCEBS) scheme, we propose a block sparse channel estimation exploiting residual difference (BSCERD) scheme, where we first compute the difference of the residual power for every two adjacent iterations, and then determine a threshold to indicate the convergence of the iterations. Moreover, to improve the global optimality and reduce the time overhead of compressive sensing, a block sparse channel estimation based on deep learning (BSCEDL) scheme is proposed to determine the indices of the nonzero blocks simultaneously. We exploit the QuaDRiGa to assess the efficacy of the schemes proposed. Simulation results show that both BSCERD and BSCEDL outperform TDCEBS, while BSCEDL is better than BSCERD in performance and can achieve much lower time overhead.
引用
收藏
页数:6
相关论文
共 50 条
[21]   Deep Learning Based Channel Estimation for Massive MIMO With Mixed-Resolution ADCs [J].
Gao, Shen ;
Dong, Peihao ;
Pan, Zhiwen ;
Li, Geoffrey Ye .
IEEE COMMUNICATIONS LETTERS, 2019, 23 (11) :1989-1993
[22]   MIMO channel estimation for mmWave based on deep learning with out-of-band information [J].
Pasic, Faruk ;
Svoboda, Philipp ;
Mecklenbraeuker, Christoph F. .
ELEKTROTECHNIK UND INFORMATIONSTECHNIK, 2025, 142 (3-4) :255-260
[23]   Deep Learning-Based Frequency-Selective Channel Estimation for Hybrid mmWave MIMO Systems [J].
Abdallah, Asmaa ;
Celik, Abdulkadir ;
Mansour, Mohammad M. ;
Eltawil, Ahmed M. .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2022, 21 (06) :3804-3821
[24]   Sparsity-Aware Channel Estimation for mmWave Massive MIMO: A Deep CNN-Based Approach [J].
Liu, Sicong ;
Huang, Xiao .
CHINA COMMUNICATIONS, 2021, 18 (06) :162-171
[25]   SEAttention-residual based channel estimation for mmWave massive MIMO systems in IoV scenarios [J].
Zhao, Junhui ;
Ren, Ruixing ;
Wu, Yao ;
Zhang, Qingmiao ;
Xu, Wei ;
Wang, Dongming ;
Fan, Lisheng .
DIGITAL COMMUNICATIONS AND NETWORKS, 2025, 11 (03) :778-786
[26]   Deep Learning-Based Channel Estimation for Massive MIMO With Hybrid Transceivers [J].
Gao, Jiabao ;
Zhong, Caijun ;
Li, Geoffrey Ye ;
Zhang, Zhaoyang .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2022, 21 (07) :5162-5174
[27]   Deep learning-based massive MIMO channel estimation with reduced feedback [J].
Sadeghi, Nasser ;
Azghani, Masoumeh .
DIGITAL SIGNAL PROCESSING, 2023, 137
[28]   Adaptive Channel Estimation Based on Model-Driven Deep Learning for Wideband mmWave Systems [J].
Jin, Weijie ;
He, Hengtao ;
Wen, Chao-Kai ;
Jin, Shi ;
Li, Geoffrey Ye .
2021 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2021,
[29]   Sparse Bayesian Learning with Atom Refinement for mmWave MIMO Channel Estimation [J].
Ngoc-Son Duong ;
Quoc-Tuan Nguyen ;
Khac-Hoang Ngo ;
Thai-Mai Dinh-Thi .
2023 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP, SSP, 2023, :155-159
[30]   Deep Learning for Parametric Channel Estimation in Massive MIMO Systems [J].
Zia, Muhammad Umer ;
Xiang, Wei ;
Vitetta, Giorgio M. ;
Huang, Tao .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (04) :4157-4167