Block Sparse Channel Estimation based on Residual Difference and Deep Learning for Wideband MmWave Massive MIMO

被引:1
作者
Tang, Rongshun
Qi, Chenhao [1 ]
Zhang, Pengju
机构
[1] Southeast Univ, Natl Mobile Commun Res Lab, Nanjing, Peoples R China
来源
2023 IEEE 97TH VEHICULAR TECHNOLOGY CONFERENCE, VTC2023-SPRING | 2023年
基金
中国国家自然科学基金;
关键词
Block sparse; channel estimation; deep learning; mmWave communications; sparse recovery; SYSTEMS;
D O I
10.1109/VTC2023-Spring57618.2023.10200898
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Time-domain channel estimation for wideband millimeter wave (mmWave) MIMO OFDM systems is considered. To mitigate the overfitting of the existing time-domain channel estimation exploiting block sparsity (TDCEBS) scheme, we propose a block sparse channel estimation exploiting residual difference (BSCERD) scheme, where we first compute the difference of the residual power for every two adjacent iterations, and then determine a threshold to indicate the convergence of the iterations. Moreover, to improve the global optimality and reduce the time overhead of compressive sensing, a block sparse channel estimation based on deep learning (BSCEDL) scheme is proposed to determine the indices of the nonzero blocks simultaneously. We exploit the QuaDRiGa to assess the efficacy of the schemes proposed. Simulation results show that both BSCERD and BSCEDL outperform TDCEBS, while BSCEDL is better than BSCERD in performance and can achieve much lower time overhead.
引用
收藏
页数:6
相关论文
共 11 条
[1]   Sparse signal reconstruction from noisy compressive measurements using cross validation [J].
Boufounos, Petros ;
Duarte, Marco F. ;
Baraniuk, Richard G. .
2007 IEEE/SP 14TH WORKSHOP ON STATISTICAL SIGNAL PROCESSING, VOLS 1 AND 2, 2007, :299-303
[2]   An Overview of Signal Processing Techniques for Millimeter Wave MIMO Systems [J].
Heath, Robert W., Jr. ;
Gonzalez-Prelcic, Nuria ;
Rangan, Sundeep ;
Roh, Wonil ;
Sayeed, Akbar M. .
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2016, 10 (03) :436-453
[3]   QuaDRiGa: A 3-D Multi-Cell Channel Model With Time Evolution for Enabling Virtual Field Trials [J].
Jaeckel, Stephan ;
Raschkowski, Leszek ;
Boerner, Kai ;
Thiele, Lars .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2014, 62 (06) :3242-3256
[4]   Two-Step Approach to Time-Domain Channel Estimation for Wideband Millimeter Wave Systems With Hybrid Architecture [J].
Kim, Hyoji ;
Gil, Gye-Tae ;
Lee, Yong H. .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2019, 67 (07) :5139-5152
[5]   Spatial Wideband Channel Estimation for mmWave Massive MIMO Systems With Hybrid Architectures and Low-Resolution ADCs [J].
Kim, In-Soo ;
Choi, Junil .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2021, 20 (06) :4016-4029
[6]   Sparse Channel Estimation and Hybrid Precoding Using Deep Learning for Millimeter Wave Massive MIMO [J].
Ma, Wenyan ;
Qi, Chenhao ;
Zhang, Zaichen ;
Cheng, Julian .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2020, 68 (05) :2838-2849
[7]   High-Resolution Channel Estimation for Frequency-Selective mmWave Massive MIMO Systems [J].
Ma, Wenyan ;
Qi, Chenhao ;
Li, Geoffrey Ye .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2020, 19 (05) :3517-3529
[8]   Acquisition of channel state information for mmWave massive MIMO: traditional and machine learning-based approaches [J].
Qi, Chenhao ;
Dong, Peihao ;
Ma, Wenyan ;
Zhang, Hua ;
Zhang, Zaichen ;
Li, Geoffrey Ye .
SCIENCE CHINA-INFORMATION SCIENCES, 2021, 64 (08)
[9]   Quasi-Static and Time-Selective Channel Estimation for Block-Sparse Millimeter Wave Hybrid MIMO Systems: Sparse Bayesian Learning (SBL) Based Approaches [J].
Srivastava, Suraj ;
Mishra, Amrita ;
Rajoriya, Anupama ;
Jagannatham, Aditya K. ;
Ascheid, Gerd .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2019, 67 (05) :1251-1266
[10]   Channel Estimation for Wideband mmWave MIMO OFDM System Exploiting Block Sparsity [J].
Wang, Yujie ;
Qi, Chenhao ;
Li, Ping ;
Lu, Zhaohua ;
Lu, Ping .
IEEE COMMUNICATIONS LETTERS, 2022, 26 (04) :897-901