Detection of Surface Defects of Magnetic Tiles Based on Improved YOLOv5

被引:3
|
作者
Li, Yan [1 ]
Fang, Juanyan [2 ]
机构
[1] Tongling Univ, Dept Math & Comp Sci, Tongling 244061, Peoples R China
[2] Woosong Univ, Endicott Coll, AI & Big Data Dept, Daejeon 34606, South Korea
关键词
RECOGNITION; LITCHI;
D O I
10.1155/2023/2466107
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The typical defect detection algorithm is ineffective due to the contrast between the magnetic tile defect and the various defect features. An improved YOLOv5-based algorithm, for detecting magnetic tile defects with varying defect features, is suggested. The procedure begins by incorporating the CBAM into feature extraction network of YOLOv5. It improves the feature of network learning capabilities for the target region by filtering and weighting the feature vectors in such a way that the processing of network is dominated by the essential target characteristics. A new loss function of detection model is then proposed according to the properties of the magnetic tile picture, and the confidence of prediction box is increased. Data augmentation technologies are introduced to increase the number of data samples. Based on magnetic tile defect datasets, the evaluation results have shown that the precision of the proposed approach is 98.56%, 3.21%, and 7.22% greater than the original YOLOv5 and Faster R-CNN, respectively, all of which demonstrate the effectiveness and accuracy of the proposed method.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Efficient detection of multiscale defects on metal surfaces with improved YOLOv5
    Guo S.
    Li S.
    Han Z.
    Gao M.
    Wang Z.
    Li H.
    Multimedia Tools and Applications, 2024, 83 (37) : 85253 - 85275
  • [42] Pedestrian detection method based on improved YOLOv5
    You, Shangtao
    Gu, Zhengchao
    Zhu, Kai
    SYSTEMS SCIENCE & CONTROL ENGINEERING, 2024, 12 (01)
  • [43] Traffic Sign Detection Based on the Improved YOLOv5
    Zhang, Rongyun
    Zheng, Kunming
    Shi, Peicheng
    Mei, Ye
    Li, Haoran
    Qiu, Tian
    APPLIED SCIENCES-BASEL, 2023, 13 (17):
  • [44] A Smoke Detection Model Based on Improved YOLOv5
    Wang, Zhong
    Wu, Lei
    Li, Tong
    Shi, Peibei
    MATHEMATICS, 2022, 10 (07)
  • [45] An Improved YOLOv5 with Structural Reparameterization for Surface Defect Detection
    Han, Yixuan
    Zheng, Liying
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2023, PT II, 2023, 14255 : 90 - 101
  • [46] Research on tile surface defect detection by improved YOLOv5
    Yu, Xulong
    Yu, Qiancheng
    Zhang, Yue
    Wang, Aoqiang
    Wang, Jinyun
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 45 (06) : 11319 - 11331
  • [47] Usage of an improved YOLOv5 for steel surface defect detection
    Wen, Huihui
    Li, Ying
    Wang, Yu
    Wang, Haoyang
    Li, Haolin
    Zhang, Hongye
    Liu, Zhanwei
    MATERIALS TESTING, 2024, 66 (05) : 726 - 735
  • [48] An Improved YOLOv5 Algorithm for Steel Surface Defect Detection
    Li Shaoxiong
    Shi Zaifeng
    Kong Fanning
    Wang Ruoqi
    Luo Tao
    LASER & OPTOELECTRONICS PROGRESS, 2023, 60 (24)
  • [49] Improved YOLOv5 Network for Steel Surface Defect Detection
    Huang, Bo
    Liu, Jianhong
    Liu, Xiang
    Liu, Kang
    Liao, Xinyu
    Li, Kun
    Wang, Jian
    METALS, 2023, 13 (08)
  • [50] YOLOv5-OCDS: An Improved Garbage Detection Model Based on YOLOv5
    Sun, Qiuhong
    Zhang, Xiaotian
    Li, Yujia
    Wang, Jingyang
    ELECTRONICS, 2023, 12 (16)