Detection of Surface Defects of Magnetic Tiles Based on Improved YOLOv5

被引:3
|
作者
Li, Yan [1 ]
Fang, Juanyan [2 ]
机构
[1] Tongling Univ, Dept Math & Comp Sci, Tongling 244061, Peoples R China
[2] Woosong Univ, Endicott Coll, AI & Big Data Dept, Daejeon 34606, South Korea
关键词
RECOGNITION; LITCHI;
D O I
10.1155/2023/2466107
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The typical defect detection algorithm is ineffective due to the contrast between the magnetic tile defect and the various defect features. An improved YOLOv5-based algorithm, for detecting magnetic tile defects with varying defect features, is suggested. The procedure begins by incorporating the CBAM into feature extraction network of YOLOv5. It improves the feature of network learning capabilities for the target region by filtering and weighting the feature vectors in such a way that the processing of network is dominated by the essential target characteristics. A new loss function of detection model is then proposed according to the properties of the magnetic tile picture, and the confidence of prediction box is increased. Data augmentation technologies are introduced to increase the number of data samples. Based on magnetic tile defect datasets, the evaluation results have shown that the precision of the proposed approach is 98.56%, 3.21%, and 7.22% greater than the original YOLOv5 and Faster R-CNN, respectively, all of which demonstrate the effectiveness and accuracy of the proposed method.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Cow Detection Model Based on Improved YOLOv5
    Wang, Wei
    Xie, Mujun
    Jiang, Changhong
    Zheng, Zhong
    Bian, Heyu
    39TH YOUTH ACADEMIC ANNUAL CONFERENCE OF CHINESE ASSOCIATION OF AUTOMATION, YAC 2024, 2024, : 1704 - 1708
  • [32] Surface Defect Detection of Bearing Rings Based on an Improved YOLOv5 Network
    Xu, Haitao
    Pan, Haipeng
    Li, Junfeng
    SENSORS, 2023, 23 (17)
  • [33] An Improved UAV Detection Method Based on YOLOv5
    Liu, Xinfeng
    Chen, Mengya
    Li, Chenglong
    Tian, Jie
    Zhou, Hao
    Ullah, Inam
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, ICIC 2023, PT I, 2023, 14086 : 739 - 750
  • [34] Driver Attention Detection Based on Improved YOLOv5
    Wang, Zhongzhou
    Yao, Keming
    Guo, Fuao
    APPLIED SCIENCES-BASEL, 2023, 13 (11):
  • [35] An Improved YOLOv5 Network for Detection of Printed Circuit Board Defects
    Niu, Jie
    Li, Hongyan
    Chen, Xu
    Qian, Kun
    JOURNAL OF SENSORS, 2023, 2023
  • [36] ST-CA YOLOv5: Improved YOLOv5 Based on Swin Transformer and Coordinate Attention for Surface Defect Detection
    Yang, Wen
    Wu, Hongjie
    Tang, Chenwei
    Lv, Jiancheng
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [37] Hand target detection based on improved YOLOv5
    Xu Z.
    Meng J.
    Fang J.
    International Journal of Wireless and Mobile Computing, 2023, 25 (04) : 353 - 361
  • [38] Research on strip surface defect detection based on improved YOLOv5 algorithm
    Lv, Shuaishuai
    Tao, Chuanzhen
    Hao, Zhuangzhuang
    Ni, Hongjun
    Hou, Zhengjie
    Li, Xiaoyuan
    Gu, Hai
    Shi, Weidong
    Chen, Linfei
    IRONMAKING & STEELMAKING, 2024, 51 (10) : 1046 - 1064
  • [39] Surface Crack Detection Method for Coal Rock Based on Improved YOLOv5
    Chen, Xinlin
    Lian, Qingwang
    Chen, Xuanlai
    Shang, Jin
    APPLIED SCIENCES-BASEL, 2022, 12 (19):
  • [40] Insulator Breakage Detection Based on Improved YOLOv5
    Han, Gujing
    He, Min
    Gao, Mengze
    Yu, Jinyun
    Liu, Kaipei
    Qin, Liang
    SUSTAINABILITY, 2022, 14 (10)