Synchronization of Discrete-Time Fractional-Order Complex-Valued Neural Networks with Distributed Delays

被引:1
作者
Perumal, R. [1 ]
Hymavathi, M. [2 ]
Ali, M. Syed [2 ]
Mahmoud, Batul A. A. [3 ]
Osman, Waleed M. [4 ]
Ibrahim, Tarek F. [5 ]
机构
[1] SRM Inst Sci & Technol, Fac Engn & Technol, Dept Math, Kattankulathur 603203, Tamil Nadu, India
[2] Thiruvalluvar Univ, Dept Math, Complex Syst & Networked Sci Res Lab, Vellore 632115, Tamil Nadu, India
[3] King Khalid Univ, Fac Sci & Arts Sarat Abeda, Dept Math, Abha 62521, Saudi Arabia
[4] King Khalid Univ, Fac Sci & Arts, Dept Math, Abha 62529, Saudi Arabia
[5] King Khalid Univ, Fac Sci & Arts Mahayel, Dept Math, Abha 62529, Saudi Arabia
关键词
fractional order; synchronization; complex-valued; discrete-time; neural networks; GLOBAL EXPONENTIAL STABILITY; DYNAMICAL NETWORKS; VARYING DELAYS; ROBUST SYNCHRONIZATION; SYSTEMS;
D O I
10.3390/fractalfract7060452
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This research investigates the synchronization of distributed delayed discrete-time fractional-order complex-valued neural networks. The necessary conditions have been established for the stability of the proposed networks using the theory of discrete fractional calculus, the discrete Laplace transform, and the theory of fractional-order discrete Mittag-Leffler functions. In order to guarantee the global asymptotic stability, adequate criteria are determined using Lyapunov's direct technique, the Lyapunov approach, and some novel analysis techniques of fractional calculation. Thus, some sufficient conditions are obtained to guarantee the global stability. The validity of the theoretical results are finally shown using numerical examples.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] On fractional order differential equations model for nonlocal epidemics
    Ahmed, E.
    Elgazzar, A. S.
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 379 (02) : 607 - 614
  • [2] Finite-time robust passive control for a class of switched reaction-diffusion stochastic complex dynamical networks with coupling delays and impulsive control
    Ali, M. Syed
    Yogambigai, J.
    Kwon, O. M.
    [J]. INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2018, 49 (04) : 718 - 735
  • [3] Ali MS, 2017, ACTA MATH SCI, V37, P368
  • [4] Finite-time robust stochastic synchronization of uncertain Markovian complex dynamical networks with mixed time-varying delays and reaction diffusion terms via impulsive control
    Ali, M. Syed
    Yogambigai, J.
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2017, 354 (05): : 2415 - 2436
  • [5] Gronwall's inequality on discrete fractional calculus
    Atici, Ferhan M.
    Eloe, Paul W.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 64 (10) : 3193 - 3200
  • [6] Atici FM, 2009, ELECTRON J QUAL THEO
  • [7] Stability analysis of Caputo-like discrete fractional systems
    Baleanu, Dumitru
    Wu, Guo-Cheng
    Bai, Yun-Ru
    Chen, Fu-Lai
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 48 : 520 - 530
  • [8] Synchronization of fractional-order complex-valued neural networks with time delay
    Bao, Haibo
    Park, Ju H.
    Cao, Jinde
    [J]. NEURAL NETWORKS, 2016, 81 : 16 - 28
  • [9] Synchronization of different fractional order chaotic systems using active control
    Bhalekar, Sachin
    Daftardar-Gejji, Varsha
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (11) : 3536 - 3546
  • [10] Discrete-time neural synchronization between an Arduino microcontroller and a Compact Development System using multiscroll chaotic signals
    Castaneda, Carlos E.
    Lopez-Mancilla, D.
    Villafana-Rauda, R. Chiu E.
    Orozco-Lopez, Onofre
    Casillas-Rodriguez, F.
    Sevilla-Escoboza, R.
    [J]. CHAOS SOLITONS & FRACTALS, 2019, 119 : 269 - 275