A combined vibration isolation system with quasi-zero stiffness and dynamic vibration absorber

被引:35
|
作者
Xing, Zhao-Yang [1 ]
Yang, Xiao-Dong [1 ]
机构
[1] Beijing Univ Technol, Fac Mat & Mfg, Beijing Key Lab Nonlinear Vibrat & Strength Mech S, Beijing 100124, Peoples R China
基金
中国国家自然科学基金;
关键词
Nonlinear vibration isolation; Quasi -zero stiffness; Dynamic vibration absorber; Combined vibration control; EULER BUCKLED BEAM; NEGATIVE STIFFNESS; FORCE TRANSMISSIBILITY; PERFORMANCE; CURVES;
D O I
10.1016/j.ijmecsci.2023.108508
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The vibration control performance of a combined vibration isolation (CVI) system consists of a quasi-zero stiffness (QZS) system and a linear dynamic vibration absorber (DVA) is investigated. Firstly, the dynamic equation is established and the amplitude-frequency response of the CVI system is deduced by the harmonic balance method, and the analytical result is verified by numerical simulation. Secondly, the mechanism of CVI system is revealed from the perspectives of vibration amplitude, energy, and force transmission: The vibration isolation performance of the QZS system can be improved by reducing the vibration amplitude. Thirdly, the control performance of the CVI system is analyzed in terms of the effects of the stiffness, damping, mass ratio of DVA, and the damping of the primary system, as well as the robustness of the system. The findings lead to the development of an explicit tuning rule for the DVA attached to the QZS system. Lastly, a comparison of control performance with other three models is conducted. The results demonstrate that the CVI system can effectively suppress the vibration amplitude and broaden the isolation frequency band. The mechanism and tuning rule for the CVI system presented in this paper provides a useful reference for improving the control performance of the QZS system.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] A 6-DOF quasi-zero stiffness vibration isolation platform
    Xiao Q.
    Zhou J.
    Xu D.
    Wang K.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2019, 38 (01): : 258 - 264
  • [22] An improved quasi-zero stiffness vibration isolation system utilizing dry friction damping
    Donmez, Ata
    Cigeroglu, Ender
    Ozgen, Gokhan O.
    NONLINEAR DYNAMICS, 2020, 101 (01) : 107 - 121
  • [23] Force transmissibility of a two-stage vibration isolation system with quasi-zero stiffness
    Xinlong Wang
    Jiaxi Zhou
    Daolin Xu
    Huajiang Ouyang
    Yong Duan
    Nonlinear Dynamics, 2017, 87 : 633 - 646
  • [24] Force transmissibility of a two-stage vibration isolation system with quasi-zero stiffness
    Wang, Xinlong
    Zhou, Jiaxi
    Xu, Daolin
    Ouyang, Huajiang
    Duan, Yong
    NONLINEAR DYNAMICS, 2017, 87 (01) : 633 - 646
  • [25] Compliant quasi-zero stiffness device for vibration energy harvesting and isolation
    Xu, Lei
    Xiang, Zhihai
    SENSORS AND ACTUATORS A-PHYSICAL, 2022, 347
  • [26] Design of magnetic-air hybrid quasi-zero stiffness vibration isolation system
    Jiang, Youliang
    Song, Chunsheng
    Ding, Chenmiao
    Xu, Binghui
    JOURNAL OF SOUND AND VIBRATION, 2020, 477
  • [27] Uncertainty analysis of quasi-zero stiffness metastructure for vibration isolation performance
    Wang, Dongxian
    Zhao, Jianlei
    Ma, Qian
    Zhou, Gang
    Zhang, Duzhou
    Zhu, Rui
    FRONTIERS IN PHYSICS, 2022, 10
  • [28] Design of broad quasi-zero stiffness platform metamaterials for vibration isolation
    Liang, Kuan
    Jing, Yuhui
    Zhang, Xiaopeng
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2024, 281
  • [29] A torsion quasi-zero stiffness vibration isolator
    Zhou, Jiaxi
    Xu, Daolin
    Bishop, Steven
    JOURNAL OF SOUND AND VIBRATION, 2015, 338 : 121 - 133
  • [30] Dynamic characteristics of a quasi-zero stiffness vibration isolator with nonlinear stiffness and damping
    Yanqi Liu
    Longlong Xu
    Chunfang Song
    Huangsen Gu
    Wen Ji
    Archive of Applied Mechanics, 2019, 89 : 1743 - 1759