Three solutions for discrete anisotropic Kirchhoff-type problems

被引:6
|
作者
Bohner, Martin [2 ]
Caristi, Giuseppe [3 ]
Ghobadi, Ahmad [4 ]
Heidarkhani, Shapour [1 ,4 ]
机构
[1] Razi Univ, Fac Sci, Dept Math, Kermanshah 67149, Iran
[2] Missouri S&T, Dept Math & Stat, Rolla, MO 65409 USA
[3] Univ Messina, Dept Econ, Messina, Italy
[4] Razi Univ, Fac Sci, Dept Math, Kermanshah 67149, Iran
关键词
discrete boundary value problem; Kirchhoff-type equation; critical point theory; variational methods; BOUNDARY-VALUE-PROBLEMS; EXISTENCE; MULTIPLICITY; EQUATION;
D O I
10.1515/dema-2022-0209
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, using critical point theory and variational methods, we investigate the existence of at least three solutions for a class of double eigenvalue discrete anisotropic Kirchhoff-type problems. An example is presented to demonstrate the applicability of our main theoretical findings.
引用
收藏
页数:13
相关论文
共 50 条
  • [11] Non-trivial solutions for nonlocal elliptic problems of Kirchhoff-type
    Afrouzi, Ghasem A.
    Hadjian, Armin
    GEORGIAN MATHEMATICAL JOURNAL, 2016, 23 (03) : 293 - 301
  • [12] Nontrivial solutions for discrete Kirchhoff-type problems with resonance via critical groups
    Yang, Jinping
    Liu, Jinsheng
    ADVANCES IN DIFFERENCE EQUATIONS, 2013,
  • [13] Three Nontrivial Solutions for Kirchhoff-Type Variational-Hemivariational Inequalities
    Chu, Jifeng
    Gharehgazlouei, Fariba
    Heidarkhani, Shapour
    Solimaninia, Arezoo
    RESULTS IN MATHEMATICS, 2015, 68 (1-2) : 71 - 91
  • [14] Elliptic anisotropic Kirchhoff-type problems with singular term
    Massar, Mohammed
    JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS, 2023, 9 (01) : 419 - 440
  • [15] MULTIPLE SOLUTIONS FOR KIRCHHOFF-TYPE PROBLEMS WITH CRITICAL GROWTH IN RN
    Liang, Sihua
    Zhang, Jihui
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2017, 47 (02) : 527 - 551
  • [16] Least energy nodal solutions for Kirchhoff-type Laplacian problems
    Cheng, Bitao
    Chen, Jianhua
    Zhang, Binlin
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (06) : 3827 - 3849
  • [17] INFINITELY MANY SOLUTIONS FOR KIRCHHOFF-TYPE PROBLEMS DEPENDING ON A PARAMETER
    Sun, Juntao
    Ji, Yongbao
    Wu, Tsung-Fang
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2016,
  • [18] PERTURBATION METHODS FOR NONLOCAL KIRCHHOFF-TYPE PROBLEMS
    D'Onofrio, Luigi
    Fiscella, Alessio
    Bisci, Giovanni Molica
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2017, 20 (04) : 829 - 853
  • [19] Kirchhoff-Type Boundary-Value Problems on the Real Line
    Heidarkhani, Shapour
    Salari, Amjad
    Barilla, David
    DIFFERENTIAL AND DIFFERENCE EQUATIONS WITH APPLICATIONS, 2018, 230 : 141 - 153
  • [20] Three Nontrivial Solutions for Kirchhoff-Type Variational–Hemivariational Inequalities
    Jifeng Chu
    Fariba Gharehgazlouei
    Shapour Heidarkhani
    Arezoo Solimaninia
    Results in Mathematics, 2015, 68 : 71 - 91