UAV-LiDAR and Terrestrial Laser Scanning for Automatic Extraction of Forest Inventory Parameters

被引:0
|
作者
Meghraoui, Khadija [1 ]
Lfalah, Hamza [2 ]
Sebari, Imane [1 ,2 ]
Kellouch, Souhail [3 ]
Fadil, Sanaa [4 ]
El Kadi, Kenza Ait [1 ,2 ]
Bensiali, Saloua [5 ]
机构
[1] Hassan II Inst Agron & Vet Med, Res Unit Geospatial Technol Smart Decis, Rabat, Morocco
[2] Hassan II Inst Agron & Vet Med, Sch Geomat & Surveying Engn, Cartog Photogrammetry Dept, Rabat, Morocco
[3] AXIGEO, Marrakech 4040, Morocco
[4] Dept Water & Forests, Rabat, Morocco
[5] Hassan II Inst Agron & Vet Med, Dept Appl Stat & Comp Sci, Rabat, Morocco
来源
PROCEEDINGS OF UASG 2021: WINGS 4 SUSTAINABILITY | 2023年 / 304卷
关键词
Crown delineation; Dendrometric parameters; Forest inventory; LSR; Point cloud; RHT; SEGMA; TLS; Tree segmentation; UAV-LiDAR; Watershed; HEIGHT;
D O I
10.1007/978-3-031-19309-5_26
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
The determination of the Dendrometric parameters of forest stands has a silvicultural and ecological interest for the forester, in particular for the evaluation of the dynamics of growth and productivity, and the evaluation of indicators of good ecological status. Currently, UAV-LiDAR (Unmanned Aerial Vehicle-Light Detection and Ranging) has become the new trend for measurement professionals, offering very high-resolution data collection at considerably lower survey costs. In addition, this technology has started to prove its utility in forest inventory applications namely to extract dendrometric parameters, where direct and conventional measurements are sometimes difficult. As for the TLS (Terrestrial Laser Scanning) technology, it has made it possible to obtain several abundant and refined structural information under the forest canopy. In the context of extraction of forest inventory parameters, the precision of extracting tree height for example using TLS alone, is insufficient. Hence the contribution of the combination of ALS (Aerial Laser Scanning) with TLS data to fill any information gaps that may exist. The main goal of this study is to present an approach to the automatic extraction of dendrometric parameters from UAV-LiDAR and TLS data. The proposed methodology is based on performing a TLS survey at a plot level and an ALS scan of the entire area. Our methodology is essentially made up of two steps: automatic crown delineation and automatic extraction of dendrometric parameters (position, Diameter at breast height, height, stem curve, concave and convex hull). For the first step, we compared the segmentation of the point cloud by the Watershed algorithm and by the SEGMA pipeline. Whereas the extraction of the dendrometric parameters was carried out using a set of algorithms namely RHT (Random Hough Transform) and LSR (Least Square Regression). The study focused on UAV-ALS and TLS datasets from different regions and with different densities (the Mediterranean, tropical, and coniferous forest). The validation was done using measurements carried out manually on the datasets. The results show that delineation by SEGMA gave a percentage of crown detection varying from 98 to 113% (over-segmentation) with diameters having a coefficient of determination varying from 56 to 90% depending on the area while the Watershed algorithm presented an over-segmentation of the actual crowns. Whereas the results for the DBH determination, the RHT and LSR algorithms both displayed almost 1-4 cm deviations from the reference while the height was extracted with 1-8 mm deviations.
引用
收藏
页码:375 / 393
页数:19
相关论文
共 50 条
  • [1] APPLICATIONS OF TERRESTRIAL LASER SCANNING AND GIS IN FOREST INVENTORY
    Cristea, Catalina
    Jocea, Andreea Florina
    JOURNAL OF APPLIED ENGINEERING SCIENCES, 2015, 5 (02): : 13 - 20
  • [2] Analysis of Optimal Pathways for Terrestrial LiDAR Scanning for the Establishment of Digital Inventory of Forest Resources
    Ko, Chi-Ung
    Yim, Jong-Su
    Kim, Dong-Geun
    Kang, Jin-Taek
    KOREAN JOURNAL OF REMOTE SENSING, 2021, 37 (02) : 245 - 256
  • [3] Benchmarking laser scanning and terrestrial photogrammetry to extract forest inventory parameters in a complex temperate forest
    Kuekenbrink, Daniel
    Marty, Mauro
    Boesch, Ruedi
    Ginzler, Christian
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2022, 113
  • [4] Forest Inventory with Terrestrial LiDAR: A Comparison of Static and Hand-Held Mobile Laser Scanning
    Bauwens, Sebastien
    Bartholomeus, Harm
    Calders, Kim
    Lejeune, Philippe
    FORESTS, 2016, 7 (06):
  • [5] Estimation of Urban Forest Characteristic Parameters Using UAV-Lidar Coupled with Canopy Volume
    Zhang, Bo
    Li, Xuejian
    Du, Huaqiang
    Zhou, Guomo
    Mao, Fangjie
    Huang, Zihao
    Zhou, Lv
    Xuan, Jie
    Gong, Yulin
    Chen, Chao
    REMOTE SENSING, 2022, 14 (24)
  • [6] Optimizing the Spatial Structure of Metasequoia Plantation Forest Based on UAV-LiDAR and Backpack-LiDAR
    Chen, Chao
    Zhou, Lv
    Li, Xuejian
    Zhao, Yinyin
    Yu, Jiacong
    Lv, Lujin
    Du, Huaqiang
    REMOTE SENSING, 2023, 15 (16)
  • [7] High-Density UAV-LiDAR in an Integrated Crop-Livestock-Forest System: Sampling Forest Inventory or Forest Inventory Based on Individual Tree Detection (ITD)
    Dalla Corte, Ana Paula
    da Cunha Neto, Ernandes M.
    Rex, Franciel Eduardo
    Souza, Deivison
    Behling, Alexandre
    Mohan, Midhun
    Sanquetta, Mateus Niroh Inoue
    Silva, Carlos Alberto
    Klauberg, Carine
    Sanquetta, Carlos Roberto
    Veras, Hudson Franklin Pessoa
    de Almeida, Danilo Roberti Alves
    Prata, Gabriel
    Zambrano, Angelica Maria Almeyda
    Trautenmueller, Jonathan William
    de Moraes, Anibal
    Karasinski, Mauro Alessandro
    Broadbent, Eben North
    DRONES, 2022, 6 (02)
  • [8] Performance and Sensitivity of Individual Tree Segmentation Methods for UAV-LiDAR in Multiple Forest Types
    Ma, Kaisen
    Chen, Zhenxiong
    Fu, Liyong
    Tian, Wanli
    Jiang, Fugen
    Yi, Jing
    Du, Zhi
    Sun, Hua
    REMOTE SENSING, 2022, 14 (02)
  • [9] Terrestrial laser scanning in forest inventories
    Liang, Xinlian
    Kankare, Ville
    Hyyppa, Juha
    Wang, Yunsheng
    Kukko, Antero
    Haggren, Henrik
    Yu, Xiaowei
    Kaartinen, Harri
    Jaakkola, Anttoni
    Guan, Fengying
    Holopainen, Markus
    Vastaranta, Mikko
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2016, 115 : 63 - 77
  • [10] Retrieving Forest Inventory Variables with Terrestrial Laser Scanning (TLS) in Urban Heterogeneous Forest
    Moskal, L. Monika
    Zheng, Guang
    REMOTE SENSING, 2012, 4 (01) : 1 - 20