Gated ion transport in disjoint carbon nanotubes by a water bridge

被引:7
作者
Li, Zhongwu [1 ]
Han, Quan [2 ]
机构
[1] China Univ Min & Technol, Sch Mechatron Engn, Xuzhou 221116, Peoples R China
[2] Nanjing Forestry Univ, Sch Mech & Elect Engn, Nanjing 210037, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Nanofluidics; Carbon nanotube; Ion channel; Gated ion transport; Water bridge; Nanogap; MOLECULAR-DYNAMICS; FUNCTIONALIZATION; TRANSLOCATION; PERMEABILITY; DNA;
D O I
10.1016/j.carbon.2023.118164
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nanofluidic ion transport in carbon nanotubes (CNTs) has numerous applications, including membrane sepa-ration, energy conversion, and ionic circuits. To imitate the natural gated ion channel systems, CNTs require a more complex structure beyond a single intact tube. In this study, we present molecular dynamics simulations demonstrating the gated ion transport in two disjoint CNTs with a nanogap. The observation of nonlinear current-voltage characteristics, featuring onset and plateau voltages for ion transport, indicates that the nanogap serves as a gate. Ions cannot transport through the disjoint CNTs below the onset voltage. Interestingly, a water bridge forms occasionally within the nanogap above the onset voltage, allowing ions to transport through coupling with water molecules. Above the plateau voltage, a stable water bridge forms and ions can transport in disjoint CNTs with the same efficiency as in the intact CNT. The formation of water bridges is due to that the electric stress on polarized water molecules near the nanogap overcomes the surface tension. Furthermore, the gated ion transport behavior is dependent on the nanogap length, CNT diameter, and CNT wettability, but not on the ion concentration. This work offers a viable approach for developing CNT-based nanofluidic devices with finely tuned ion transport efficiency.
引用
收藏
页数:9
相关论文
共 57 条
  • [1] Imaging α-hemolysin with molecular dynamics:: Ionic conductance, osmotic permeability, and the electrostatic potential map
    Aksimentiev, A
    Schulten, K
    [J]. BIOPHYSICAL JOURNAL, 2005, 88 (06) : 3745 - 3761
  • [2] Microscopic kinetics of DNA translocation through synthetic nanopores
    Aksimentiev, A
    Heng, JB
    Timp, G
    Schulten, K
    [J]. BIOPHYSICAL JOURNAL, 2004, 87 (03) : 2086 - 2097
  • [3] Fluids and Electrolytes under Confinement in Single-Digit Nanopores
    Aluru, Narayana R.
    Aydin, Fikret
    Bazant, Martin Z.
    Blankschtein, Daniel
    Brozena, Alexandra H.
    de Souza, J. Pedro
    Elimelech, Menachem
    Faucher, Samuel
    Fourkas, John T.
    Koman, Volodymyr B.
    Kuehne, Matthias
    Kulik, Heather J.
    Li, Hao-Kun
    Li, Yuhao
    Li, Zhongwu
    Majumdar, Arun
    Martis, Joel
    Misra, Rahul Prasanna
    Noy, Aleksandr
    Tuan Anh Pham
    Qu, Haoran
    Rayabharam, Archith
    Reed, Mark A.
    Ritt, Cody L.
    Schwegler, Eric
    Siwy, Zuzanna
    Strano, Michael S.
    Wang, YuHuang
    Yao, Yun-Chiao
    Zhan, Cheng
    Zhang, Ze
    [J]. CHEMICAL REVIEWS, 2023, 123 (06) : 2737 - 2831
  • [4] Armstrong W., 1893, The Electrical Engineer, V10, P153
  • [5] A straightforward reductive approach for the deoxygenation, activation and functionalization of ultrashort single-walled carbon nanotubes
    Bao, Lipiao
    Martin, Oliver
    Wei, Tao
    Perez-Ojeda, M. Eugenia
    Hauke, Frank
    Hirsch, Andreas
    [J]. CARBON, 2021, 171 : 768 - 776
  • [6] Impermeability of graphene and its applications
    Berry, Vikas
    [J]. CARBON, 2013, 62 : 1 - 10
  • [7] Nanofluidics coming of age
    Bocquet, Lyderic
    [J]. NATURE MATERIALS, 2020, 19 (03) : 254 - 256
  • [8] Simulated surface tensions of common water models
    Chen, Feng
    Smith, Paul E.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2007, 126 (22)
  • [9] Towards single-species selectivity of membranes with subnanometre pores
    Epsztein, Razi
    DuChanois, Ryan M.
    Ritt, Cody L.
    Noy, Aleksandr
    Elimelech, Menachem
    [J]. NATURE NANOTECHNOLOGY, 2020, 15 (06) : 426 - 436
  • [10] A SMOOTH PARTICLE MESH EWALD METHOD
    ESSMANN, U
    PERERA, L
    BERKOWITZ, ML
    DARDEN, T
    LEE, H
    PEDERSEN, LG
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1995, 103 (19) : 8577 - 8593