Federated fuzzy k-means for privacy-preserving behavior analysis in smart grids

被引:17
|
作者
Wang, Yi [1 ]
Ma, Jiahao [1 ]
Gao, Ning [1 ]
Wen, Qingsong [2 ]
Sun, Liang [2 ]
Guo, Hongye [3 ]
机构
[1] Univ Hong Kong, Dept Elect & Elect Engn, Hong Kong 999077, Peoples R China
[2] Alibaba Grp US Inc, DAMO Acad, Bellevue, WA 98004 USA
[3] Tsinghua Univ, Dept Elect Engn, Beijing 100086, Peoples R China
关键词
Federated learning; Behavior analysis; Smart meter data; Fuzzy k-means; Privacy-preserving; DEMAND RESPONSE; IDENTIFICATION; EDGE;
D O I
10.1016/j.apenergy.2022.120396
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Better understanding the behavior of various participants in smart grids, such as electricity consumers and generators, is important and beneficial for flexibility exploration and renewable energy accommodation. Clustering, as an effective data-driven approach to behavior analysis, has been widely applied for extracting the typical electricity consumption behavior of consumers and the bidding behavior of generators in smart grids. Traditionally, the clustering algorithms are implemented centrally with the assumption that data from all consumers or generators can be accessed. However, it may not be the case in the real world because the consumers and generators may not be able to or willing to share their own data due to privacy concerns or commercial competition. To address this issue, in this paper, we propose a federated fuzzy k-means method for privacy-preserving behavior analysis in smart grids. Specifically, two learning strategies, i.e., model averaging and gradient averaging, are designed for the implementation of the federated fuzzy k-means clustering. Both methods are investigated and comprehensively compared on both the electricity consumption behavior dataset and the generator bidding behavior dataset. Experimental results show that our proposed methods achieve similar performance to the traditional centralized fuzzy clustering method on independent and identically distributed (i.i.d.) data, as well as protecting the privacy of different participants in smart grids. As for non-i.i.d., the performance of the model averaging-based method worsen; in contrast, the gradient averaging-based method is more robust to this situation.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Privacy-Preserving Hybrid K-Means
    Gao, Zhiqiang
    Sun, Yixiao
    Cui, Xiaolong
    Wang, Yutao
    Duan, Yanyu
    Wang, Xu An
    INTERNATIONAL JOURNAL OF DATA WAREHOUSING AND MINING, 2018, 14 (02) : 1 - 17
  • [2] Outsourced and Privacy-Preserving K-means Clustering Scheme for Smart Grid
    Shen, Xielin
    Yuan, Bo
    Peng, Weiwen
    Qian, Yuanquan
    Wu, Yonghua
    2022 IEEE 10TH INTERNATIONAL CONFERENCE ON INFORMATION, COMMUNICATION AND NETWORKS (ICICN 2022), 2022, : 307 - 313
  • [3] Privacy-preserving federated k-means for proactive caching in next generation cellular networks
    Liu, Yang
    Ma, Zhuo
    Yan, Zheng
    Wang, Zhuzhu
    Liu, Ximeng
    Ma, Jianfeng
    INFORMATION SCIENCES, 2020, 521 : 14 - 31
  • [4] K-Means Clustering With Local dχ-Privacy for Privacy-Preserving Data Analysis
    Yang, Mengmeng
    Tjuawinata, Ivan
    Lam, Kwok-Yan
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2022, 17 : 2524 - 2537
  • [5] Privacy-Preserving Serverless Computing Using Federated Learning for Smart Grids
    Singh, Parminder
    Masud, Mehedi
    Hossain, M. Shamim
    Kaur, Avinash
    Muhammad, Ghulam
    Ghoneim, Ahmed
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (11) : 7843 - 7852
  • [6] Security and Correctness Analysis on Privacy-Preserving k-Means Clustering Schemes
    Su, Chunhua
    Bao, Feng
    Zhou, Jianying
    Takagi, Tsuyoshi
    Sakurai, Kouichi
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2009, E92A (04) : 1246 - 1250
  • [7] Multi-Party Verifiable Privacy-Preserving Federated k-Means Clustering in Outsourced Environment
    Hou, Ruiqi
    Tang, Fei
    Liang, Shikai
    Ling, Guowei
    SECURITY AND COMMUNICATION NETWORKS, 2021, 2021
  • [8] Privacy-Preserving K-Means Clustering Upon Negative Databases
    Hu, Xiaoyi
    Lu, Liping
    Zhao, Dongdong
    Xiang, Jianwen
    Liu, Xing
    Zhou, Haiying
    Xiong, Shengwu
    Tian, Jing
    NEURAL INFORMATION PROCESSING (ICONIP 2018), PT IV, 2018, 11304 : 191 - 204
  • [9] Importance of Data Standardization in Privacy-Preserving K-Means Clustering
    Su, Chunhua
    Zhan, Justin
    Sakurai, Kouichi
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, 2009, 5667 : 276 - +
  • [10] Privacy-Preserving Kernel k-Means Outsourcing with Randomized Kernels
    Lin, Keng-Pei
    2013 IEEE 13TH INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW), 2013, : 860 - 866