Calabi-Yau threefolds with non-Gorenstein involutions

被引:0
作者
Lee, Nam-Hoon [1 ,2 ,3 ]
机构
[1] Hongik Univ, Dept Math Educ, Seoul, South Korea
[2] Korea Inst Adv Study, Sch Math, Seoul, South Korea
[3] Hongik Univ, Dept Math Educ, 42-1 Sangsu Dong, Seoul 121791, South Korea
基金
新加坡国家研究基金会;
关键词
Calabi-Yau threefold; involution; Q-Fano threefold; Q-FANO; 3-FOLDS; CLASSIFICATION; VARIETIES;
D O I
10.1002/mana.202100027
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The concept of non-Gorenstein involutions on Calabi-Yau threefolds is a higher dimensional generalization of non-symplectic involutions on K3 surfaces. We present some elementary facts about Calabi-Yau threefolds with non-Gorenstein involutions. We give a classification of the Calabi-Yau threefolds of Picard rank one with non-Gorenstein involutions, whose fixed locus is not zero-dimensional.
引用
收藏
页码:3449 / 3458
页数:10
相关论文
共 24 条
[1]  
Barth W.P., 2004, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3 Folge, V3
[2]  
BAYLE L, 1994, J REINE ANGEW MATH, V449, P9
[3]  
Beauville Bea Arnaud, 1983, Prog. Math., V39, P1
[4]  
Bini G, 2012, ADV THEOR MATH PHYS, V16, P887
[5]  
Borcea C., 1997, AMS IP STUD ADV MATH, V1, P717
[6]  
Bouchard V, 2008, COMMUN NUMBER THEORY, V2, P1
[7]  
CAMPANA F, 1993, J REINE ANGEW MATH, V440, P77
[8]  
Cartan H., 1957, ALGEBRAIC GEOMETRY T, P90
[9]   G2-MANIFOLDS AND ASSOCIATIVE SUBMANIFOLDS VIA SEMI-FANO 3-FOLDS [J].
Corti, Alessio ;
Haskins, Mark ;
Nordstroem, Johannes ;
Pacini, Tommaso .
DUKE MATHEMATICAL JOURNAL, 2015, 164 (10) :1971-2092
[10]  
EV Esnault H., 1992, DMV SEMINAR, V20