Task offloading mechanism based on federated reinforcement learning in mobile edge computing

被引:19
|
作者
Li, Jie [1 ]
Yang, Zhiping [1 ]
Wang, Xingwei [1 ]
Xia, Yichao [1 ]
Ni, Shijian [1 ]
机构
[1] Northeastern Univ, Sch Comp Sci & Engn, Shenyang 110000, Peoples R China
基金
中国国家自然科学基金;
关键词
Mobile edge computing; Taskoffloading; QoS; Deep reinforcement learning; Federated learning; RESOURCE-ALLOCATION; MANAGEMENT; WIRELESS;
D O I
10.1016/j.dcan.2022.04.006
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
With the arrival of 5G, latency-sensitive applications are becoming increasingly diverse. Mobile Edge Computing (MEC) technology has the characteristics of high bandwidth, low latency and low energy consumption, and has attracted much attention among researchers. To improve the Quality of Service (QoS), this study focuses on computation offloading in MEC. We consider the QoS from the perspective of computational cost, dimensional disaster, user privacy and catastrophic forgetting of new users. The QoS model is established based on the delay and energy consumption and is based on DDQN and a Federated Learning (FL) adaptive task offloading algorithm in MEC. The proposed algorithm combines the QoS model and deep reinforcement learning algorithm to obtain an optimal offloading policy according to the local link and node state information in the channel coherence time to address the problem of time-varying transmission channels and reduce the computing energy consumption and task processing delay. To solve the problems of privacy and catastrophic forgetting, we use FL to make distributed use of multiple users' data to obtain the decision model, protect data privacy and improve the model universality. In the process of FL iteration, the communication delay of individual devices is too large, which affects the overall delay cost. Therefore, we adopt a communication delay optimization algorithm based on the unary outlier detection mechanism to reduce the communication delay of FL. The simulation results indicate that compared with existing schemes, the proposed method significantly reduces the computation cost on a device and improves the QoS when handling complex tasks.
引用
收藏
页码:492 / 504
页数:13
相关论文
共 50 条
  • [31] Privacy-preserving task offloading in mobile edge computing: A deep reinforcement learning approach
    Xia, Fanglue
    Chen, Ying
    Huang, Jiwei
    SOFTWARE-PRACTICE & EXPERIENCE, 2024, 54 (09) : 1774 - 1792
  • [32] Deep Reinforcement Learning for Task Offloading in Edge Computing
    Xie, Bo
    Cui, Haixia
    2024 4TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND INTELLIGENT SYSTEMS ENGINEERING, MLISE 2024, 2024, : 250 - 254
  • [33] Multi-Agent Deep Reinforcement Learning for Task Offloading in UAV-Assisted Mobile Edge Computing
    Zhao, Nan
    Ye, Zhiyang
    Pei, Yiyang
    Liang, Ying-Chang
    Niyato, Dusit
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2022, 21 (09) : 6949 - 6960
  • [34] Federated Reinforcement Learning-Empowered Task Offloading for Large Models in Vehicular Edge Computing
    Wu, Huaming
    Gu, Anqi
    Liang, Yonghui
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2025, 74 (02) : 1979 - 1991
  • [35] Task offloading method of edge computing in internet of vehicles based on deep reinforcement learning
    Zhang, Degan
    Cao, Lixiang
    Zhu, Haoli
    Zhang, Ting
    Du, Jinyu
    Jiang, Kaiwen
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2022, 25 (02): : 1175 - 1187
  • [36] Task offloading optimization in mobile edge computing based on a deep reinforcement learning algorithm using density clustering and ensemble learning
    Qin, Yi
    Chen, Junyan
    Jin, Lei
    Yao, Rui
    Gong, Zidan
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [37] Mobile edge computing task distribution and offloading algorithm based on deep reinforcement learning in internet of vehicles
    Wang, Jianxi
    Wang, Liutao
    JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2021,
  • [38] Adaptive two-stage task offloading based on meta reinforcement learning for mobile edge computing
    Wenjuan Li
    Genyuan Yang
    Ben Wang
    Qifei Zhang
    Keyong Hu
    Chengjie Pan
    Qiwen Ni
    The Journal of Supercomputing, 81 (6)
  • [39] Deep reinforcement learning-based low-latency task offloading for mobile-edge computing networks
    Yang, Wentao
    Liu, Zhibin
    Liu, Xiaowu
    Ma, Yuefeng
    APPLIED SOFT COMPUTING, 2024, 166
  • [40] Deep Reinforcement Learning Method for Task Offloading in Mobile Edge Computing Networks Based on Parallel Exploration with Asynchronous Training
    Chen, Junyan
    Jin, Lei
    Yao, Rui
    Zhang, Hongmei
    MOBILE NETWORKS & APPLICATIONS, 2024,