Task offloading mechanism based on federated reinforcement learning in mobile edge computing

被引:19
|
作者
Li, Jie [1 ]
Yang, Zhiping [1 ]
Wang, Xingwei [1 ]
Xia, Yichao [1 ]
Ni, Shijian [1 ]
机构
[1] Northeastern Univ, Sch Comp Sci & Engn, Shenyang 110000, Peoples R China
基金
中国国家自然科学基金;
关键词
Mobile edge computing; Taskoffloading; QoS; Deep reinforcement learning; Federated learning; RESOURCE-ALLOCATION; MANAGEMENT; WIRELESS;
D O I
10.1016/j.dcan.2022.04.006
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
With the arrival of 5G, latency-sensitive applications are becoming increasingly diverse. Mobile Edge Computing (MEC) technology has the characteristics of high bandwidth, low latency and low energy consumption, and has attracted much attention among researchers. To improve the Quality of Service (QoS), this study focuses on computation offloading in MEC. We consider the QoS from the perspective of computational cost, dimensional disaster, user privacy and catastrophic forgetting of new users. The QoS model is established based on the delay and energy consumption and is based on DDQN and a Federated Learning (FL) adaptive task offloading algorithm in MEC. The proposed algorithm combines the QoS model and deep reinforcement learning algorithm to obtain an optimal offloading policy according to the local link and node state information in the channel coherence time to address the problem of time-varying transmission channels and reduce the computing energy consumption and task processing delay. To solve the problems of privacy and catastrophic forgetting, we use FL to make distributed use of multiple users' data to obtain the decision model, protect data privacy and improve the model universality. In the process of FL iteration, the communication delay of individual devices is too large, which affects the overall delay cost. Therefore, we adopt a communication delay optimization algorithm based on the unary outlier detection mechanism to reduce the communication delay of FL. The simulation results indicate that compared with existing schemes, the proposed method significantly reduces the computation cost on a device and improves the QoS when handling complex tasks.
引用
收藏
页码:492 / 504
页数:13
相关论文
共 50 条
  • [21] Sequence-Based Deep Reinforcement Learning for Task Offloading in Mobile Edge Computing: A Comparison Study
    Xiao, Xiang-Jie
    Wang, Yong
    Wang, Kezhi
    Huang, Pei-Qiu
    BIO-INSPIRED COMPUTING: THEORIES AND APPLICATIONS, PT 2, BIC-TA 2023, 2024, 2062 : 94 - 106
  • [22] Dependency-aware task offloading based on deep reinforcement learning in mobile edge computing networks
    Li, Junnan
    Yang, Zhengyi
    Chen, Kai
    Ming, Zhao
    Li, Xiuhua
    Fan, Qilin
    Hao, Jinlong
    Cheng, Luxi
    WIRELESS NETWORKS, 2024, 30 (06) : 5519 - 5531
  • [23] Deep Reinforcement Learning and Markov Decision Problem for Task Offloading in Mobile Edge Computing
    Gao, Xiaohu
    Ang, Mei Choo
    Althubiti, Sara A.
    JOURNAL OF GRID COMPUTING, 2023, 21 (04)
  • [24] A novel task offloading algorithm based on an integrated trust mechanism in mobile edge computing
    Tong, Zhao
    Ye, Feng
    Mei, Jing
    Liu, Bilan
    Li, Keqin
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2022, 169 : 185 - 198
  • [25] Multi-agent deep reinforcement learning for collaborative task offloading in mobile edge computing networks
    Chen, Minxuan
    Guo, Aihuang
    Song, Chunlin
    DIGITAL SIGNAL PROCESSING, 2023, 140
  • [26] Security-Aware Task Offloading Using Deep Reinforcement Learning in Mobile Edge Computing Systems
    Lu, Haodong
    He, Xiaoming
    Zhang, Dengyin
    ELECTRONICS, 2024, 13 (15)
  • [27] A Quantum Reinforcement Learning Approach for Joint Resource Allocation and Task Offloading in Mobile Edge Computing
    Wei, Xinliang
    Gao, Xitong
    Ye, Kejiang
    Xu, Cheng-Zhong
    Wang, Yu
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2025, 24 (04) : 2580 - 2593
  • [28] Optimization of Task Offloading Strategy for Mobile Edge Computing Based on Multi-Agent Deep Reinforcement Learning
    Lu, Haifeng
    Gu, Chunhua
    Luo, Fei
    Ding, Weichao
    Zheng, Shuai
    Shen, Yifan
    IEEE ACCESS, 2020, 8 : 202573 - 202584
  • [29] Federated Deep Reinforcement Learning Based Task Offloading with Power Control in Vehicular Edge Computing
    Moon, Sungwon
    Lim, Yujin
    SENSORS, 2022, 22 (24)
  • [30] Dependent Task Offloading for Edge Computing based on Deep Reinforcement Learning
    Wang, Jin
    Hu, Jia
    Min, Geyong
    Zhan, Wenhan
    Zomaya, Albert Y.
    Georgalas, Nektarios
    IEEE TRANSACTIONS ON COMPUTERS, 2022, 71 (10) : 2449 - 2461