STI-Net: Spatiotemporal integration network for video saliency detection

被引:14
|
作者
Zhou, Xiaofei [1 ]
Cao, Weipeng [2 ]
Gao, Hanxiao [1 ]
Ming, Zhong [2 ]
Zhang, Jiyong [1 ]
机构
[1] Hangzhou Dianzi Univ, Sch Automat, Hangzhou 310018, Peoples R China
[2] Guangdong Lab Artificial Intelligence & Digital Ec, Shenzhen 518107, Peoples R China
基金
中国国家自然科学基金;
关键词
Spatiotemporal saliency; Feature aggregation; Saliency prediction; Saliency fusion; OBJECT DETECTION; FUSION; SEGMENTATION; ATTENTION; FEATURES;
D O I
10.1016/j.ins.2023.01.106
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Image saliency detection, to which much effort has been devoted in recent years, has advanced significantly. In contrast, the community has paid little attention to video saliency detection. Especially, existing video saliency models are very likely to fail in videos with difficult scenarios such as fast motion, dynamic background, and nonrigid deformation. Furthermore, performing video saliency detection directly using image saliency models that ignore video temporal information is inappropriate. To alleviate this issue, this study proposes a novel end-to-end spatiotemporal integration network (STI-Net) for detecting salient objects in videos. Specifically, our method is made up of three key steps: feature aggregation, saliency prediction, and saliency fusion, which are used sequentially to generate spatiotemporal deep feature maps, coarse saliency predictions, and the final saliency map. The key advantage of our model lies in the comprehensive exploration of spatial and temporal information across the entire network, where the two features interact with each other in the feature aggregation step, are used to construct boundary cue in the saliency prediction step, and also serve as the original information in the saliency fusion step. As a result, the generated spatiotemporal deep feature maps can precisely and completely characterize the salient objects, and the coarse saliency predictions have well-defined boundaries, effectively improving the final saliency map's quality. Furthermore, "shortcut connections" are introduced into our model to make the proposed network easy to train and obtain accurate results when the network is deep. Extensive experimental results on two publicly available challenging video datasets demonstrate the effectiveness of the proposed model, which achieves comparable performance to state-of-the-art saliency models.
引用
收藏
页码:134 / 147
页数:14
相关论文
共 50 条
  • [21] A Spatiotemporal Saliency Model for Video Surveillance
    Tong Yubing
    Cheikh, Faouzi Alaya
    Guraya, Fahad Fazal Elahi
    Konik, Hubert
    Tremeau, Alain
    COGNITIVE COMPUTATION, 2011, 3 (01) : 241 - 263
  • [22] Visual Saliency Detection Using Spatiotemporal Decomposition
    Bhattacharya, Saumik
    Venkatesh, K. Subramanian
    Gupta, Sumana
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (04) : 1665 - 1675
  • [23] Stereoscopic video saliency detection based on spatiotemporal correlation and depth confidence optimization
    Zhang, Ping
    Liu, Jingwen
    Wang, Xiaoyang
    Pu, Tian
    Fei, Chun
    Guo, Zhengkui
    NEUROCOMPUTING, 2020, 377 : 256 - 268
  • [24] Novelty-based Spatiotemporal Saliency Detection for Prediction of Gaze in Egocentric Video
    Polatsek, Patrik
    Benesova, Wanda
    Paletta, Lucas
    Perko, Roland
    IEEE SIGNAL PROCESSING LETTERS, 2016, 23 (03) : 394 - 398
  • [25] Video saliency detection by gestalt theory
    Fang, Yuming
    Zhang, Xiaoqiang
    Yuan, Feiniu
    Imamoglu, Nevrez
    Liu, Haiwen
    PATTERN RECOGNITION, 2019, 96
  • [26] Saliency-Aware Convolution Neural Network for Ship Detection in Surveillance Video
    Shao, Zhenfeng
    Wang, Linggang
    Wang, Zhongyuan
    Du, Wan
    Wu, Wenjing
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2020, 30 (03) : 781 - 794
  • [27] Transformer-Based Multi-Scale Feature Integration Network for Video Saliency Prediction
    Zhou, Xiaofei
    Wu, Songhe
    Shi, Ran
    Zheng, Bolun
    Wang, Shuai
    Yin, Haibing
    Zhang, Jiyong
    Yan, Chenggang
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (12) : 7696 - 7707
  • [28] Deep fusion based video saliency detection
    Wen, Hongfa
    Zhou, Xiaofei
    Sun, Yaoqi
    Zhang, Jiyong
    Yan, Chenggang
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2019, 62 : 279 - 285
  • [29] Pattern mining based video saliency detection
    Ramadan, Hiba
    Tairi, Hamid
    2017 INTELLIGENT SYSTEMS AND COMPUTER VISION (ISCV), 2017,
  • [30] EF-Net: A novel enhancement and fusion network for RGB-D saliency detection
    Chen, Qian
    Fu, Keren
    Liu, Ze
    Chen, Geng
    Du, Hongwei
    Qiu, Bensheng
    Shao, Ling
    PATTERN RECOGNITION, 2021, 112