Machine Learning-Assisted Clustering of Nanoparticle-Binding Peptides and Prediction of Their Properties

被引:6
作者
Kenry [1 ,2 ,3 ]
机构
[1] Harvard Univ, Harvard John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[2] Dana Farber Canc Inst, Dept Imaging, Boston, MA 02215 USA
[3] Harvard Med Sch, Boston, MA 02215 USA
关键词
biomimetic nanostructures; data-driven analysis; gold nanoparticles; machine learning; peptides; FUNCTIONALIZED GOLD NANOPARTICLES; DESIGN; DISCOVERY; PROTEIN; ACID;
D O I
10.1002/adts.202300122
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Bioinspired and biomimetic nanostructures have attracted tremendous interest for theranostic and nanomedicine applications. Among the strategies employed to synthesize these nanostructures, surface functionalization and biomineralization of nanomaterials using peptides stand out due to the wide availability of peptides and their variations as well as the ease of modification process. Effective peptide-based modification of nanomaterials relies on preferential and strong binding between peptides and target nanomaterials. Therefore, the discovery and design of specific peptides with high binding affinity to nanomaterials are essential. Unfortunately, conventional peptide screening methods suffer from shortcomings which render peptide discovery time-consuming, expensive, and cumbersome. Herein, leveraging unsupervised and supervised machine learning, a framework to accelerate peptide analysis is presented. Specifically, more than 1700 nanoparticle-binding peptides are classified into peptide clusters to identify important peptide features to realize higher-affinity binding. In addition, the binding and biomineralization properties of peptides are predicted with high classification accuracy, precision, and recall. This work then proposes the use of unsupervised k-means clustering and supervised k-nearest neighbors algorithms for grouping peptides and predicting their properties, respectively. It is anticipated that the framework originated from this study will further facilitate the rational selection and design of peptides for engineering functional bioinspired and biomimetic nanostructures.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Machine Learning-Assisted Modeling in Antenna Array Design
    Wu, Qi
    Chen, Weiqi
    Li, Yuefeng
    Wang, Haiming
    Yin, Jiexi
    Yin, Weishuang
    [J]. 2024 IEEE INTERNATIONAL WORKSHOP ON ANTENNA TECHNOLOGY, IWAT, 2024, : 92 - 93
  • [42] Machine Learning-Assisted PAPR Reduction in Massive MIMO
    Kalinov, Aleksei
    Bychkov, Roman
    Ivanov, Andrey
    Osinsky, Alexander
    Yarotsky, Dmitry
    [J]. IEEE WIRELESS COMMUNICATIONS LETTERS, 2021, 10 (03) : 537 - 541
  • [43] Machine learning-assisted investigations toward polymer synthesis
    Zhang, Zexi
    Cai, Zhanxiang
    Zhang, Wenbin
    Lu, Hua
    Chen, Mao
    [J]. CHINESE SCIENCE BULLETIN-CHINESE, 2025, 70 (4-5): : 471 - 480
  • [44] Machine learning-assisted global optimization of photonic devices
    Kudyshev, Zhaxylyk A.
    Kildishev, Alexander, V
    Shalaev, Vladimir M.
    Boltasseva, Alexandra
    [J]. NANOPHOTONICS, 2021, 10 (01) : 371 - 383
  • [45] Novel Cocrystals of Vonoprazan: Machine Learning-Assisted Discovery
    Lee, Min-Jeong
    Kim, Ji-Yoon
    Kim, Paul
    Lee, In-Seo
    Mswahili, Medard E.
    Jeong, Young-Seob
    Choi, Guang J.
    [J]. PHARMACEUTICS, 2022, 14 (02)
  • [46] Machine learning-assisted synthetic biology of cyanobacteria and microalgae
    Jin, Weijia
    Wang, Fangzhong
    Chen, Lei
    Zhang, Weiwen
    [J]. ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS, 2025, 86
  • [47] Machine Learning-Assisted Design of Advanced Polymeric Materials
    Gao, Liang
    Lin, Jiaping
    Wang, Liquan
    Du, Lei
    [J]. ACCOUNTS OF MATERIALS RESEARCH, 2024, 5 (05): : 571 - 584
  • [48] Machine Learning-Assisted System for Thyroid Nodule Diagnosis
    Zhang, Bin
    Tian, Jie
    Pei, Shufang
    Chen, Yubing
    He, Xin
    Dong, Yuhao
    Zhang, Lu
    Mo, Xiaokai
    Huang, Wenhui
    Cong, Shuzhen
    Zhang, Shuixing
    [J]. THYROID, 2019, 29 (06) : 858 - 867
  • [49] Machine Learning-Assisted Cervical Cancer Prediction Using Particle Swarm Optimization for Improved Feature Selection and Prediction
    Ileberi, Emmanuel
    Sun, Yanxia
    [J]. IEEE ACCESS, 2024, 12 : 152684 - 152695
  • [50] Opportunities and Challenges for Machine Learning-Assisted Enzyme Engineering
    Yang, Jason
    Li, Francesca-Zhoufan
    Arnold, Frances H.
    [J]. ACS CENTRAL SCIENCE, 2024, 10 (02) : 226 - 241