A 2D-Programmable and Scalable Reconfigurable Intelligent Surface Remotely Controlled via Digital Infrared Code

被引:18
作者
Sayanskiy, Andrey [1 ]
Belov, Andrei [1 ]
Yafasov, Ruslan [1 ]
Lyulyakin, Andrey [1 ]
Sherstobitov, Alexander [2 ]
Glybovski, Stanislav [1 ]
Lyashev, Vladimir [2 ]
机构
[1] ITMO Univ, Sch Phys & Engn, St Petersburg 197101, Russia
[2] Huawei Technol Co Ltd, RTT Algorithm Lab, Moscow Res Ctr, Moscow 127106, Russia
基金
俄罗斯科学基金会;
关键词
Varactors; Reflection; Light emitting diodes; Apertures; PIN photodiodes; Switches; Remote control; Control with light; patch array; reconfigurable intelligent surface (RIS); reflectarray (RA); varactor diode; METASURFACE; DESIGN;
D O I
10.1109/TAP.2022.3217327
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Reconfigurable intelligent surfaces (RISs) are promising and relatively low-cost tools for improving signal propagation in wireless communications. A RIS assists a base station (BS) in optimizing the channel and maximizing its capacity by dynamically manipulating the reflected field. Typically, RISs are based on dynamically reconfigurable reflectarrays (RAs), i.e., 2-D arrays of passive patch antennas, individually switchable between two or more reflection phases. The spatial resolution of provided reflected field patterns is governed by the aperture dimensions and the number of patches to meet the requirements of different communication scenarios and environments. Here, we demonstrate a 1 bit RIS for 5 GHz Wi-Fi band made by assembling together multiple independently operating and structurally detached building blocks all powered by the same DC source. Each block contains four separately phase-switchable patch antennas with varactor diodes and a common microcontroller extracting digital control commands from modulated infrared light illuminating the entire RIS. Such distributed light-sensitive controllers grant the possibility of scaling the aperture by adding or removing blocks without redesigning any control circuitry. Moreover, in the proposed RIS a full 2-D phase encoding capability is achieved along with a robust remote infrared control.
引用
收藏
页码:570 / 580
页数:11
相关论文
共 44 条
[1]   Polarization-Reconfigurable Antenna Array for Millimeter-Wave 5G [J].
Al Abbas, Emad ;
Nguyen-Trong, Nghia ;
Mobashsher, Ahmed Toaha ;
Abbosh, Amin M. .
IEEE ACCESS, 2019, 7 :131214-131220
[2]  
Balanis C. A., 1987, Antenna Theory: Analysis and Design
[3]   Wireless Communications Through Reconfigurable Intelligent Surfaces [J].
Basar, Ertugrul ;
Di Renzo, Marco ;
De Rosny, Julien ;
Debbah, Merouane ;
Alouini, Mohamed-Slim ;
Zhang, Rui .
IEEE ACCESS, 2019, 7 :116753-116773
[4]  
Bhartia P., 1982, 1982 APS International Symposium Digest. Antennas and Propagation, P304
[5]  
Alexandropoulos GC, 2020, Arxiv, DOI arXiv:2006.11136
[6]   Light-controllable metasurface for microwave wavefront manipulation [J].
Chen, Lei ;
Nie, Qian Fan ;
Ruan, Ying ;
Luo, Si Si ;
Ye, Fu Ju ;
Cui, Hao Yang .
OPTICS EXPRESS, 2020, 28 (13) :18742-18749
[7]   Coding metamaterials, digital metamaterials and programmable metamaterials [J].
Cui, Tie Jun ;
Qi, Mei Qing ;
Wan, Xiang ;
Zhao, Jie ;
Cheng, Qiang .
LIGHT-SCIENCE & APPLICATIONS, 2014, 3 :e218-e218
[8]   Reconfigurable Intelligent Surface-Based Wireless Communications: Antenna Design, Prototyping, and Experimental Results [J].
Dai, Linglong ;
Wang, Bichai ;
Wang, Min ;
Yang, Xue ;
Tan, Jingbo ;
Bi, Shuangkaisheng ;
Xu, Shenheng ;
Yang, Fan ;
Chen, Zhi ;
Di Renzo, Marco ;
Chae, Chan-Byoung ;
Hanzo, Lajos .
IEEE ACCESS, 2020, 8 :45913-45923
[9]   Smart Radio Environments Empowered by Reconfigurable Intelligent Surfaces: How It Works, State of Research, and The Road Ahead [J].
Di Renzo, Marco ;
Zappone, Alessio ;
Debbah, Merouane ;
Alouini, Mohamed-Slim ;
Yuen, Chau ;
de Rosny, Julien ;
Tretyakov, Sergei .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2020, 38 (11) :2450-2525
[10]   From the generalized reflection law to the realization of perfect anomalous reflectors [J].
Diaz-Rubio, Ana ;
Asadchy, Viktar S. ;
Elsakka, Amr ;
Tretyakov, Sergei A. .
SCIENCE ADVANCES, 2017, 3 (08)