Power Convexity of Solutions to a Special Lagrangian Equation in Dimension Two

被引:1
作者
Zhang, Wei [1 ]
Zhou, Qi [1 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou, Gansu, Peoples R China
基金
中国国家自然科学基金;
关键词
Power convexity; Special Lagrangian equation; Constant rank theorem; CONSTANT RANK THEOREM; LEVEL SETS; ELLIPTIC PROBLEMS; DIRICHLET PROBLEM; BRUNN-MINKOWSKI; CONCAVITY; INEQUALITIES; EXISTENCE; DOMAINS; PHASES;
D O I
10.1007/s12220-022-01186-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove power convexity result of solution to Dirichlet problem of special Lagrangian equation in dimension two. This provides new example of fully nonlinear elliptic boundary value problem whose solution shares power convexity property previously only knew for 2-Hessian equation in dimension three. The key ingredients consist of microscopic convexity principles and deformation methods.
引用
收藏
页数:13
相关论文
共 49 条
  • [31] LEWIS JL, 1977, ARCH RATION MECH AN, V66, P201
  • [32] A Brunn-Minkowski inequality for the Hessian eigenvalue in three-dimensional convex domain
    Liu, Pan
    Ma, Xi-Nan
    Xu, Lu
    [J]. ADVANCES IN MATHEMATICS, 2010, 225 (03) : 1616 - 1633
  • [33] Lu SY, 2023, Arxiv, DOI arXiv:2204.05420
  • [34] The convexity of solution of a class Hessian equation in bounded convex domain in R3
    Ma, Xi-Nan
    Xu, Lu
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 255 (07) : 1713 - 1723
  • [35] Superharmonicity of curvature function for the convex level sets of harmonic functions
    Ma, Xi-Nan
    Zhang, Wei
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2021, 60 (04)
  • [36] The Convexity Estimates for the Solutions of Two Elliptic Equations
    Ma, Xi-Nan
    Shi, Shujun
    Ye, Yu
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2012, 37 (12) : 2116 - 2137
  • [37] Gaussian Curvature Estimates for the Convex Level Sets of p-Harmonic Functions
    Ma, Xi-Nan
    Ou, Qianzhong
    Zhang, Wei
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2010, 63 (07) : 935 - 971
  • [38] Singular solution to Special Lagrangian Equations
    Nadirashvili, Nikolai
    Vladut, Serge
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2010, 27 (05): : 1179 - 1188
  • [39] Sakaguchi S., 1987, Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 4e serie, V14, P403
  • [40] Convexity of solutions and Brunn-Minkowski inequalities for Hessian equations in R3
    Salani, Paolo
    [J]. ADVANCES IN MATHEMATICS, 2012, 229 (03) : 1924 - 1948