Sinusoidal CO2 respiratory challenge for concurrent perfusion and cerebrovascular reactivity MRI

被引:2
|
作者
Vu, Chau [1 ,2 ]
Xu, Botian [1 ,2 ]
Gonzalez-Zacarias, Clio [2 ,3 ,4 ]
Shen, Jian [1 ,2 ]
Baas, Koen P. A. [5 ]
Choi, Soyoung [2 ,3 ,4 ]
Nederveen, Aart J. [5 ]
Wood, John C. [1 ,2 ]
机构
[1] Univ Southern Calif, Dept Biomed Engn, Los Angeles, CA 90007 USA
[2] Univ Southern Calif, Childrens Hosp Los Angeles, Div Cardiol, Los Angeles, CA 90007 USA
[3] Univ Southern Calif, Neurosci Grad Program, Los Angeles, CA USA
[4] Univ Southern Calif, Signal & Image Proc Inst, Los Angeles, CA USA
[5] Amsterdam UMC, Locat AMC, Dept Radiol & Nucl Med, Amsterdam, Netherlands
基金
美国国家卫生研究院;
关键词
brain perfusion; respiratory challenges; cerebrovascular reactivity (CVR); carbon dioxide challenge; deoxygenation; dynamic susceptibility contrast (DSC); CEREBRAL-BLOOD-FLOW; CARBON-DIOXIDE; TRANSIT-TIME; VOLUME; HYPERCAPNIA; PRINCIPLES; DYNAMICS; SIGNAL; OXYGEN; PET;
D O I
10.3389/fphys.2023.1102983
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
Introduction: Deoxygenation-based dynamic susceptibility contrast (dDSC) has previously leveraged respiratory challenges to modulate blood oxygen content as an endogenous source of contrast alternative to gadolinium injection in perfusion-weighted MRI. This work proposed the use of sinusoidal modulation of end-tidal CO2 pressures (SineCO ( 2 )), which has previously been used to measure cerebrovascular reactivity, to induce susceptibility-weighted gradient-echo signal loss to measure brain perfusion.Methods: SineCO ( 2 ) was performed in 10 healthy volunteers (age 37 & PLUSMN; 11, 60% female), and tracer kinetics model was applied in the frequency domain to calculate cerebral blood flow, cerebral blood volume, mean transit time, and temporal delay. These perfusion estimates were compared against reference techniques, including gadolinium-based DSC, arterial spin labeling, and phase contrast.Results: Our results showed regional agreement between SineCO ( 2 ) and the clinical comparators. SineCO ( 2 ) was able to generate robust CVR maps in conjunction to baseline perfusion estimates.Discussion: Overall, this work demonstrated feasibility of using sinusoidal CO2 respiratory paradigm to simultaneously acquire both cerebral perfusion and cerebrovascular reactivity maps in one imaging sequence.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Impaired cerebrovascular autoregulation and reduced CO2 reactivity after long duration spaceflight
    Zuj, K. A.
    Arbeille, Ph
    Shoemaker, J. K.
    Blaber, A. P.
    Greaves, D. K.
    Xu, D.
    Hughson, R. L.
    AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 2012, 302 (12): : H2592 - H2598
  • [42] Assessment of Cerebrovascular Reactivity Using CO2-BOLD MRI: A 15-Year, Single Center Experience
    Raghavan, Vishvak
    Sobczyk, Olivia
    Sayin, Ece Su
    Poublanc, Julien
    Skanda, Abby
    Duffin, James
    Venkatraghavan, Lashmi
    Fisher, Joseph A.
    Mikulis, David J.
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2024, 60 (03) : 954 - 961
  • [43] Influence of CO2 on neurovascular coupling: interaction with dynamic cerebral autoregulation and cerebrovascular reactivity
    Maggio, Paola
    Salinet, Angela S. M.
    Robinson, Thompson G.
    Panerai, Ronney B.
    PHYSIOLOGICAL REPORTS, 2014, 2 (03):
  • [44] ASSESSMENT OF CEREBROVASCULAR REACTIVITY BY DOPPLER CO2 AND DIAMOX TESTING - WHICH IS THE APPROPRIATE METHOD
    KLEISER, B
    SCHOLL, D
    WIDDER, B
    CEREBROVASCULAR DISEASES, 1994, 4 (03) : 134 - 138
  • [45] Cerebrovascular Reactivity Measured with ASL Perfusion MRI, Ivy Sign, and Regional Tissue Vascularization in Moyamoya
    Kronenburg, Annick
    Bulder, Marcel M. M.
    Bokkers, Reinoud P. H.
    Hartkamp, Nolan S.
    Hendrikse, Jeroen
    Vonken, Evert-jan
    Kappelle, L. Jaap
    van der Zwan, Albert
    Klijn, Catharina J. M.
    Braun, Kees P. J.
    WORLD NEUROSURGERY, 2019, 125 : E639 - E650
  • [46] Correction for Blood Pressure Improves Correlation between Cerebrovascular Reactivity Assessed by Breath Holding and 6% CO2 Breathing
    Prakash, Kiran
    Chandran, Dinu S.
    Khadgawat, Rajesh
    Jaryal, Ashok Kumar
    Deepak, Kishore Kumar
    JOURNAL OF STROKE & CEREBROVASCULAR DISEASES, 2014, 23 (04) : 630 - 635
  • [47] Unchanged cerebrovascular CO2 reactivity and hypercapnic ventilatory response during strict head-down tilt bed rest in a mild hypercapnic environment
    Laurie, Steven S.
    Christian, Kate
    Kysar, Jacob
    Lee, Stuart M. C.
    Lovering, Andrew T.
    Macias, Brandon R.
    Moestl, Stefan
    Sies, Wolfram
    Mulder, Edwin
    Young, Millennia
    Stenger, Michael B.
    JOURNAL OF PHYSIOLOGY-LONDON, 2020, 598 (12): : 2491 - 2505
  • [48] The association between BOLD-based cerebrovascular reactivity (CVR) and end-tidal CO2 in healthy subjects
    Hou, Xirui
    Liu, Peiying
    Li, Yang
    Jiang, Dengrong
    De Vis, Jill B.
    Lin, Zixuan
    Sur, Sandeepa
    Baker, Zachary
    Mao, Deng
    Ravi, Harshan
    Rodrigue, Karen
    Albert, Marilyn
    Park, Denise C.
    Lu, Hanzhang
    NEUROIMAGE, 2020, 207
  • [49] Prospective observational cohort study of cerebrovascular CO2 reactivity in patients with inflammatory CNS diseases
    Lepur, D.
    Kutlesa, M.
    Barsic, B.
    EUROPEAN JOURNAL OF CLINICAL MICROBIOLOGY & INFECTIOUS DISEASES, 2011, 30 (08) : 989 - 996
  • [50] Influence of high altitude on cerebrovascular and ventilatory responsiveness to CO2
    Fan, Jui-Lin
    Burgess, Keith R.
    Basnyat, Riche
    Thomas, Kate N.
    Peebles, Karen C.
    Lucas, Samuel J. E.
    Lucas, Rebekah A. I.
    Donnelly, Joseph
    Cotter, James D.
    Ainslie, Philip N.
    JOURNAL OF PHYSIOLOGY-LONDON, 2010, 588 (03): : 539 - 549