Molecular insights of nanozymes from design to catalytic mechanism

被引:47
|
作者
Xu, Yuan [1 ]
Zhou, Zhixin [1 ]
Deng, Nankai [1 ]
Fu, Kangchun [1 ]
Zhu, Caixia [1 ]
Hong, Qing [1 ]
Shen, Yanfei [1 ]
Liu, Songqin [1 ]
Zhang, Yuanjian [1 ]
机构
[1] Southeast Univ, Sch Chem & Chem Engn, Med Sch, Jiangsu Engn Lab Smart Carbon Rich Mat & Device,Ji, Nanjing 211189, Peoples R China
基金
中国国家自然科学基金;
关键词
nanozyme; mechanism; descriptor; free-ROS; bound-ROS; SINGLE-ATOM NANOZYMES; SUPEROXIDE-DISMUTASE NANOZYMES; PEROXIDASE-LIKE ACTIVITY; BIOORTHOGONAL CATALYSIS; OXYGEN REDUCTION; MIMICKING; OXIDASE; NANOPARTICLES; DISCOVERY; PLATINUM;
D O I
10.1007/s11426-022-1529-y
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Emerging as cost-effective potential alternatives to natural enzymes, nanozymes have attracted increasing interest in broad fields. To exploit the in-depth potential of nanozymes, rational structural engineering and explicit catalytic mechanisms at the molecular scale are required. Recently, impressive progress has been made in mimicking the characteristics of natural enzymes by constructing metal active sites, binding pockets, scaffolds, and delicate allosteric regulation. Ingenious in-depth studies have been conducted with advances in structural characterization and theoretical calculations, unveiling the "black box" of nanozyme-catalytic mechanisms. This review introduces the state-of-art synthesis strategies by learning from the natural enzyme counterparts and summarizes the general overview of the nanozyme mechanism with a particular emphasis on the adsorbed intermediates and descriptors that predict the nanozyme activity The emerging activity assessment methodology that illustrates the relationship between electrochemical oxygen reduction and enzymatic oxygen reduction is discussed with up-to-date advances Future opportunities and challenges are presented in the end to spark more profound work and attract more researchers from various backgrounds to the flourishing field of nanozymes.
引用
收藏
页码:1318 / 1335
页数:18
相关论文
共 50 条
  • [1] Molecular insights of nanozymes from design to catalytic mechanism
    Yuan Xu
    Zhixin Zhou
    Nankai Deng
    Kangchun Fu
    Caixia Zhu
    Qing Hong
    Yanfei Shen
    Songqin Liu
    Yuanjian Zhang
    Science China Chemistry, 2023, 66 : 1318 - 1335
  • [2] Carbon-based nanozymes: Design, catalytic mechanism, and bioapplication
    Sun, Yun
    Xu, Bolong
    Pan, Xueting
    Wang, Hongyu
    Wu, Qingyuan
    Li, Shanshan
    Jiang, Bingyin
    Liu, Huiyu
    COORDINATION CHEMISTRY REVIEWS, 2023, 475
  • [3] Insights on catalytic mechanism of CeO2 as multiple nanozymes
    Ma, Yuanyuan
    Tian, Zhimin
    Zhai, Wenfang
    Qu, Yongquan
    NANO RESEARCH, 2022, 15 (12) : 10328 - 10342
  • [4] Rational Design Strategies for Nanozymes
    Chen, Zhen
    Yu, Yixin
    Gao, Yonghui
    Zhu, Zhiling
    ACS NANO, 2023, 17 (14) : 13062 - 13080
  • [5] Insights on catalytic mechanism of CeO2 as multiple nanozymes
    Yuanyuan Ma
    Zhimin Tian
    Wenfang Zhai
    Yongquan Qu
    Nano Research, 2022, 15 : 10328 - 10342
  • [6] Efficient Design Strategies for Nanozymes
    Wu, Jiangjiexing
    Wei, Hui
    PROGRESS IN CHEMISTRY, 2021, 33 (01) : 42 - 51
  • [7] Nanozymes: Activity origin, catalytic mechanism, and biological application
    Yang, Wenping
    Yang, Xin
    Zhu, Longjiao
    Chu, Huashuo
    Li, Xiangyang
    Xu, Wentao
    COORDINATION CHEMISTRY REVIEWS, 2021, 448
  • [8] Rational Design of Nanozymes for Engineered Cascade Catalytic Cancer Therapy
    Jia, Xiuna
    Wang, Erkang
    Wang, Jin
    CHEMICAL REVIEWS, 2025, 125 (05) : 2908 - 2952
  • [9] Catalytic mechanism and application of nanozymes
    Li Z.
    Feng K.
    Zhang W.
    Ma M.
    Gu N.
    Zhang Y.
    Kexue Tongbao/Chinese Science Bulletin, 2018, 63 (21): : 2128 - 2139
  • [10] Nanozymes in Catalytic Cancer Theranostics
    Yang Bo-Wen
    Chen Yu
    Shi Jian-Lin
    PROGRESS IN BIOCHEMISTRY AND BIOPHYSICS, 2018, 45 (02) : 237 - 255