Domain generalization via adversarial out-domain augmentation for remaining useful life prediction of bearings under unseen conditions

被引:50
|
作者
Ding, Yifei [1 ,3 ]
Jia, Minping [1 ]
Cao, Yudong [1 ]
Ding, Peng [1 ]
Zhao, Xiaoli [2 ]
Lee, Chi-Guhn [3 ]
机构
[1] Southeast Univ, Sch Mech Engn, Nanjing 211189, Peoples R China
[2] Nanjing Univ Sci & Technol, Sch Mech Engn, Nanjing 210014, Peoples R China
[3] Univ Toronto, Ctr Maintenance Optimizat & Reliabil Engn, Toronto, ON M5S 3G8, Canada
基金
中国国家自然科学基金;
关键词
Remaining useful life prediction; Domain generalization; Adversarial training; Transfer learning; FAULT-DIAGNOSIS; NETWORK;
D O I
10.1016/j.knosys.2022.110199
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Since classical deep learning (DL) techniques are hungry for massive data and suffer from domain shift, domain adaptation (DA) methods are broadly adopted in prognostics and health management (PHM) to align source and target domains. However, DA relies on target datasets collected in advance, which are not always available in practice. In this paper, a domain generalization (DG) approach, which learns from multiple source domains and generalizes well to unseen domains, is introduced for remaining useful life (RUL) prediction of bearings under unseen operating conditions. Specifically, we propose an adversarial out-domain augmentation (AOA) framework to generate pseudo-domains, thereby increasing the diversity of available samples. Hence, a generator is trained in an adversarial manner to generate augmented pseudo-domains by maximizing the domain discrepancy of the latent representations. In addition, we add manifold and semantic regularization to its objective function to ensure the consistency of the pseudo-domains. Trained with these available domains, a task predictor can improve the generalization in inaccessible target domain. Based on this, we provide a specific implementation of AOA-based RUL prediction for DG and validate its effectiveness and superiority using experimental datasets.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Remaining useful life estimation of bearings under different working conditions via Wasserstein distance-based weighted domain adaptation
    Hu, Tao
    Guo, Yiming
    Gu, Liudong
    Zhou, Yifan
    Zhang, Zhisheng
    Zhou, Zhiting
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2022, 224
  • [22] Domain Adaptive Remaining Useful Life Prediction With Transformer
    Li, Xinyao
    Li, Jingjing
    Zuo, Lin
    Zhu, Lei
    Shen, Heng Tao
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [23] A Novel Transfer Learning Method Based on Domain Adversarial Networks for Remaining Useful Life Prediction
    Yang, Yinghua
    Yao, Dandan
    Liu, Xiaozhi
    2022 34TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2022, : 275 - 280
  • [24] Adversarial Domain-Invariant Generalization: A Generic Domain-Regressive Framework for Bearing Fault Diagnosis Under Unseen Conditions
    Chen, Liang
    Li, Qi
    Shen, Changqing
    Zhu, Jun
    Wang, Dong
    Xia, Min
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (03) : 1790 - 1800
  • [25] A Domain Adaptive Method with Orthogonal Constraint for Predicting the Remaining Useful Life of Rolling Bearings under Cross Working Conditions
    Han Y.
    Lin Z.
    Huang Q.
    Xiang M.
    Wen R.
    Zhang Y.
    Dianzi Yu Xinxi Xuebao/Journal of Electronics and Information Technology, 2024, 46 (03): : 1043 - 1050
  • [26] Remaining useful life prediction of bearings using multi-source adversarial online regression under online unknown conditions
    Zhuang, Jichao
    Cao, Yudong
    Jia, Minping
    Zhao, Xiaoli
    Peng, Qingjin
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 227
  • [27] Domain augmentation generalization network for real-time fault diagnosis under unseen working conditions
    Shi, Yaowei
    Deng, Aidong
    Deng, Minqiang
    Xu, Meng
    Liu, Yang
    Ding, Xue
    Bian, Wenbin
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2023, 235
  • [28] Domain generalization for rotating machinery real-time remaining useful life prediction via multi-domain orthogonal degradation feature exploration
    Shang, Jie
    Xu, Danyang
    Qiu, Haobo
    Jiang, Chen
    Gao, Liang
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2025, 223
  • [29] Bearings remaining useful life prediction across equipment-operating conditions based on multisource-multitarget domain adaptation
    Shuang, Li
    Shen, Xingquan
    Zhou, Jinjie
    Miao, Hongbin
    Qiao, Yijun
    Lei, Guannan
    MEASUREMENT, 2024, 236
  • [30] A generalized network with domain invariance and specificity representation for bearing remaining useful life prediction under unknown conditions
    Zheng, Qing
    Teng, Pengtao
    Zhang, Kai
    Ding, Guofu
    Lai, Xuwei
    Li, Zhixuan
    Yuan, Zhaocheng
    KNOWLEDGE-BASED SYSTEMS, 2025, 310