Domain generalization via adversarial out-domain augmentation for remaining useful life prediction of bearings under unseen conditions

被引:50
|
作者
Ding, Yifei [1 ,3 ]
Jia, Minping [1 ]
Cao, Yudong [1 ]
Ding, Peng [1 ]
Zhao, Xiaoli [2 ]
Lee, Chi-Guhn [3 ]
机构
[1] Southeast Univ, Sch Mech Engn, Nanjing 211189, Peoples R China
[2] Nanjing Univ Sci & Technol, Sch Mech Engn, Nanjing 210014, Peoples R China
[3] Univ Toronto, Ctr Maintenance Optimizat & Reliabil Engn, Toronto, ON M5S 3G8, Canada
基金
中国国家自然科学基金;
关键词
Remaining useful life prediction; Domain generalization; Adversarial training; Transfer learning; FAULT-DIAGNOSIS; NETWORK;
D O I
10.1016/j.knosys.2022.110199
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Since classical deep learning (DL) techniques are hungry for massive data and suffer from domain shift, domain adaptation (DA) methods are broadly adopted in prognostics and health management (PHM) to align source and target domains. However, DA relies on target datasets collected in advance, which are not always available in practice. In this paper, a domain generalization (DG) approach, which learns from multiple source domains and generalizes well to unseen domains, is introduced for remaining useful life (RUL) prediction of bearings under unseen operating conditions. Specifically, we propose an adversarial out-domain augmentation (AOA) framework to generate pseudo-domains, thereby increasing the diversity of available samples. Hence, a generator is trained in an adversarial manner to generate augmented pseudo-domains by maximizing the domain discrepancy of the latent representations. In addition, we add manifold and semantic regularization to its objective function to ensure the consistency of the pseudo-domains. Trained with these available domains, a task predictor can improve the generalization in inaccessible target domain. Based on this, we provide a specific implementation of AOA-based RUL prediction for DG and validate its effectiveness and superiority using experimental datasets.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Uncertainty-Weighted Domain Generalization for Remaining Useful Life Prediction of Rolling Bearings Under Unseen Conditions
    Tong, Shiyan
    Han, Yan
    Zhang, Xiaolong
    Tian, Hao
    Li, Xin
    Huang, Qingqing
    IEEE SENSORS JOURNAL, 2024, 24 (07) : 10933 - 10943
  • [2] Cross-domain Remaining Useful Life prediction under unseen condition via Mixed Data and Domain Generalization
    Lei, Xiaochen
    Shao, Huikai
    Tang, Zixiang
    Xu, Shengjun
    Zhong, Dexing
    MEASUREMENT, 2025, 244
  • [3] Remaining Useful Life Prediction via Information Enhanced Domain Adversarial Generalization
    Wang, Jiaolong
    Zhang, Fode
    Ng, Hon Keung Tony
    Shi, Yimin
    IEEE TRANSACTIONS ON RELIABILITY, 2024,
  • [4] Remaining useful life prediction under variable operating conditions via multisource adversarial domain adaptation networks
    Du, Junrong
    Song, Lei
    Gui, Xuanang
    Zhang, Jian
    Guo, Lili
    Li, Xuzhi
    APPLIED SOFT COMPUTING, 2024, 161
  • [5] AsdinNorm: A Single-Source Domain Generalization Method for the Remaining Useful Life Prediction of Bearings
    Xu, Juan
    Ma, Bin
    Chen, Weiwei
    Shan, Chengwei
    LUBRICANTS, 2024, 12 (05)
  • [6] A sparse domain adaption network for remaining useful life prediction of rolling bearings under different working conditions
    Miao, Mengqi
    Yu, Jianbo
    Zhao, Zhihong
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2022, 219
  • [7] Contrastive domain-invariant generalization for remaining useful life prediction under diverse conditions and fault modes
    Xiao, Xiaoqi
    Zhang, Jianguo
    Xu, Dan
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2025, 253
  • [8] Weighted Adversarial Domain Adaptation for Machine Remaining Useful Life Prediction
    Wu, Kangkai
    Li, Jingjing
    Zuo, Lin
    Lu, Ke
    Shen, Heng Tao
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [9] Contrastive Adversarial Domain Adaptation for Machine Remaining Useful Life Prediction
    Ragab, Mohamed
    Chen, Zhenghua
    Wu, Min
    Foo, Chuan Sheng
    Kwoh, Chee Keong
    Yan, Ruqiang
    Li, Xiaoli
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 17 (08) : 5239 - 5249
  • [10] Cross-domain augmentation diagnosis: An adversarial domain-augmented generalization method for fault diagnosis under unseen working conditions
    Li, Qi
    Chen, Liang
    Kong, Lin
    Wang, Dong
    Xia, Min
    Shen, Changqing
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2023, 234