Topological edge breathers in a nonlinear Su-Schrieffer-Heeger lattice

被引:2
|
作者
Johansson, Magnus [1 ]
机构
[1] Linkoping Univ, Dept Phys Chem & Biol IFM, SE-58183 Linkoping, Sweden
关键词
Topological edge state; Breather; Su-Schrieffer-Heeger lattice; Linear stability analysis; Gap solitons; QUASI-PERIODIC SOLUTIONS; GAP SOLITONS; INSTABILITIES;
D O I
10.1016/j.physleta.2022.128593
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show the existence of breathing edge modes in the Su-Schrieffer-Heeger model with cubic (Kerr) on-site nonlinearity, bifurcating from stationary edge solitons with propagation constant inside the topological gap of the linear model. These edge breathers are exact solutions to the nonlinear equations of motion, with time-periodic intensity oscillations and tails exponentially decaying from the edge. They bifurcate from two localized internal eigenmodes of the stationary edge soliton, having eigenfrequencies inside the topological gap and all higher harmonics above the linear spectrum. Numerical Floquet analysis for solutions obtained from a Newton scheme shows that edge breathers may be linearly stable even in regimes of large-amplitude oscillations, mainly manifested as time-periodic power exchange between the edge site and its next-nearest neighbor. (c) 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Topological edge states in the Su-Schrieffer-Heeger model subject to balanced particle gain and loss
    Marcel Klett
    Holger Cartarius
    Dennis Dast
    Jörg Main
    Günter Wunner
    The European Physical Journal D, 2018, 72
  • [42] Topological edge states in Su-Schrieffer-Heeger chain via non-Hermitian coupling
    Zhou, Xingping
    Jia, Shiyin
    Zhan, Peng
    PHYSICS LETTERS A, 2023, 487
  • [43] Transmissible topological edge states based on Su-Schrieffer-Heeger photonic crystals with defect cavities
    Yan, Qiuchen
    Ma, Rui
    Lyu, Qinghong
    Hu, Xiaoyong
    Gong, Qihuang
    NANOPHOTONICS, 2024, 13 (08) : 1397 - 1406
  • [44] Downfolding the Su-Schrieffer-Heeger model
    Schobert, Arne
    Berges, Jan
    Wehling, Tim
    van Loon, Erik
    SCIPOST PHYSICS, 2021, 11 (04):
  • [45] The topological edge modes and Tamm modes in Su-Schrieffer-Heeger LC-resonator circuits
    Wang, Hai-Xiao
    Liang, Chengpeng
    Poo, Yin
    Luan, Pi-Gang
    Guo, Guang-Yu
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2021, 54 (43)
  • [46] Macroscopic Zeno Effect in a Su-Schrieffer-Heeger Photonic Topological Insulator
    Ivanov, Sergey K.
    Zhuravitskii, Sergei A.
    Skryabin, Nikolay N.
    Dyakonov, Ivan V.
    Kalinkin, Alexander A.
    Kulik, Sergei P.
    Kartashov, Yaroslav V.
    Konotop, Vladimir V.
    Zadkov, Victor N.
    LASER & PHOTONICS REVIEWS, 2023, 17 (10)
  • [47] Topological nodal points in two coupled Su-Schrieffer-Heeger chains
    Li, C.
    Lin, S.
    Zhang, G.
    Song, Z.
    PHYSICAL REVIEW B, 2017, 96 (12)
  • [48] Topological Graphene Plasmons in a Plasmonic Realization of the Su-Schrieffer-Heeger Model
    Rappoport, Tatiana G.
    Bludov, Yuliy, V
    Koppens, Frank H. L.
    Peres, Nuno M. R.
    ACS PHOTONICS, 2021, 8 (06) : 1817 - 1823
  • [49] Topological phases in the non-Hermitian Su-Schrieffer-Heeger model
    Lieu, Simon
    PHYSICAL REVIEW B, 2018, 97 (04)
  • [50] Topological entanglement properties of disconnected partitions in the Su-Schrieffer-Heeger model
    Micallo, Tommaso
    Vitale, Vittorio
    Dalmonte, Marcello
    Fromholz, Pierre
    SCIPOST PHYSICS CORE, 2020, 3 (02):