Topological edge breathers in a nonlinear Su-Schrieffer-Heeger lattice

被引:2
|
作者
Johansson, Magnus [1 ]
机构
[1] Linkoping Univ, Dept Phys Chem & Biol IFM, SE-58183 Linkoping, Sweden
关键词
Topological edge state; Breather; Su-Schrieffer-Heeger lattice; Linear stability analysis; Gap solitons; QUASI-PERIODIC SOLUTIONS; GAP SOLITONS; INSTABILITIES;
D O I
10.1016/j.physleta.2022.128593
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show the existence of breathing edge modes in the Su-Schrieffer-Heeger model with cubic (Kerr) on-site nonlinearity, bifurcating from stationary edge solitons with propagation constant inside the topological gap of the linear model. These edge breathers are exact solutions to the nonlinear equations of motion, with time-periodic intensity oscillations and tails exponentially decaying from the edge. They bifurcate from two localized internal eigenmodes of the stationary edge soliton, having eigenfrequencies inside the topological gap and all higher harmonics above the linear spectrum. Numerical Floquet analysis for solutions obtained from a Newton scheme shows that edge breathers may be linearly stable even in regimes of large-amplitude oscillations, mainly manifested as time-periodic power exchange between the edge site and its next-nearest neighbor. (c) 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Topological and nontopological features of generalized Su-Schrieffer-Heeger models
    Ahmadi, N.
    Abouie, J.
    Baeriswyl, D.
    PHYSICAL REVIEW B, 2020, 101 (19)
  • [22] Observation of the topological soliton state in the Su-Schrieffer-Heeger model
    Meier, Eric J.
    An, Fangzhao Alex
    Gadway, Bryce
    NATURE COMMUNICATIONS, 2016, 7
  • [23] Topological bound states in interacting Su-Schrieffer-Heeger rings
    Marques, A. M.
    Dias, R. G.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2018, 30 (30)
  • [24] Light bullets in Su-Schrieffer-Heeger photonic topological insulators
    Ivanov, Sergey K.
    Kartashov, Yaroslav V.
    Torner, Lluis
    PHYSICAL REVIEW A, 2023, 107 (03)
  • [25] Topological marker approach to an interacting Su-Schrieffer-Heeger model
    Melo, Pedro B.
    Junior, Sebastiao A. S.
    Chen, Wei
    Mondaini, Rubem
    Paiva, Thereza
    PHYSICAL REVIEW B, 2023, 108 (19)
  • [26] Topological invariants in dissipative extensions of the Su-Schrieffer-Heeger model
    Dangel, Felix
    Wagner, Marcel
    Cartarius, Holger
    Main, Joerg
    Wunner, Gunter
    PHYSICAL REVIEW A, 2018, 98 (01)
  • [27] Subwavelength Su-Schrieffer-Heeger topological modes in acoustic waveguides
    Coutant, Antonin
    Achilleos, Vassos
    Richoux, Olivier
    Theocharis, Georgios
    Pagneux, Vincent
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2022, 151 (06): : 3626 - 3632
  • [28] Asymmetrical temporal dynamics of edge modes in Su-Schrieffer-Heeger lattice with Kerr nonlinearity
    Alharbi, Ghada H.
    Wong, Stephan
    Gong, Yongkang
    Oh, Sang Soon
    PHYSICAL REVIEW RESEARCH, 2024, 6 (04):
  • [29] Topological solitons in coupled Su-Schrieffer-Heeger waveguide arrays
    Sabour, Khalil
    Kartashov, Yaroslav V.
    OPTICS LETTERS, 2024, 49 (13) : 3580 - 3583
  • [30] Topological transitions in dissipatively coupled Su-Schrieffer-Heeger models
    Nair, Jayakrishnan M. P.
    Scully, Marlan O.
    Agarwal, Girish S.
    PHYSICAL REVIEW B, 2023, 108 (18)