Reinforcement Learning-Based Optimization for Mobile Edge Computing Scheduling Game

被引:14
作者
Wang, Tingting [1 ]
Lu, Bingxian [2 ]
Wang, Wei [3 ]
Wei, Wei [4 ]
Yuan, Xiaochen [1 ]
Li, Jianqing [1 ]
机构
[1] Macau Univ Sci & Technol, Fac Informat Technol, Av Wai Long, Taipa 999078, Macao, Peoples R China
[2] Dalian Univ Technol, Sch Software, Dalian 116024, Peoples R China
[3] Sun Yat Sen Univ, Sch Intelligent Syst Engn, Shenzhen 510275, Peoples R China
[4] Xian Univ Technol, Sch Comp Sci & Engn, Xian 710049, Peoples R China
来源
IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE | 2023年 / 7卷 / 01期
基金
中国国家自然科学基金;
关键词
Servers; Task analysis; Games; Computational modeling; Processor scheduling; Delays; 5G mobile communication; Mobile Computing; game theory; edge computing; scheduling; RESOURCE-ALLOCATION; NETWORKS; RADIO;
D O I
10.1109/TETCI.2022.3145694
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Task scheduling on edge computing servers is a critical concern affecting user experience. Current scheduling methods attain an overall appealing performance through centralized control. Nevertheless, forcing users to act based on a centralized control is impractical. Hence, this work suggests a game theory-based distributed edge computing server task scheduling model. The proposed method comprehensively considers the mobile device-server link quality and the server's computing resource allocation and balances link quality and computing resources requirements when selecting edge computing servers. Furthermore, we develop a time series prediction algorithm based on IndRNN and LSTM to accurately predict link quality. Once Nash equilibrium is reached quickly through our proposed acceleration scheme, the proposed model provides various QoS for different priority users. The experimental results highlight that the developed solution provides differentiated services while optimizing computing resource scheduling and ensuring an approximate Nash equilibrium in polynomial time.
引用
收藏
页码:55 / 64
页数:10
相关论文
共 33 条
  • [1] Balasubramanian V, 2019, IEEE CONF COMPUT, P44, DOI [10.1109/INFCOMW.2019.8845263, 10.1109/infcomw.2019.8845263]
  • [2] Balasubramanian V, 2018, IEEE INT CONF CL NET
  • [3] Distributed Multiuser Computation Offloading for Cloudlet-Based Mobile Cloud Computing: A Game-Theoretic Machine Learning Approach
    Cao, Huijin
    Cai, Jun
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2018, 67 (01) : 752 - 764
  • [4] A game-theoretic approach to computation offloading in mobile cloud computing
    Cardellini, Valeria
    Persone, Vittoria De Nitto
    Di Valerio, Valerio
    Facchinei, Francisco
    Grassi, Vincenzo
    Lo Presti, Francesco
    Piccialli, Veronica
    [J]. MATHEMATICAL PROGRAMMING, 2016, 157 (02) : 421 - 449
  • [5] Efficient Multi-User Computation Offloading for Mobile-Edge Cloud Computing
    Chen, Xu
    Jiao, Lei
    Li, Wenzhong
    Fu, Xiaoming
    [J]. IEEE-ACM TRANSACTIONS ON NETWORKING, 2016, 24 (05) : 2827 - 2840
  • [6] Decentralized Computation Offloading Game for Mobile Cloud Computing
    Chen, Xu
    [J]. IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2015, 26 (04) : 974 - 983
  • [7] Joint Load Balancing and Offloading in Vehicular Edge Computing and Networks
    Dai, Yueyue
    Xu, Du
    Maharjan, Sabita
    Zhang, Yan
    [J]. IEEE INTERNET OF THINGS JOURNAL, 2019, 6 (03): : 4377 - 4387
  • [8] Learning for Computation Offloading in Mobile Edge Computing
    Dinh, Thinh Quang
    La, Quang Duy
    Quek, Tony Q. S.
    Shin, Hyundong
    [J]. IEEE TRANSACTIONS ON COMMUNICATIONS, 2018, 66 (12) : 6353 - 6367
  • [9] Feldmann AE, 2008, LECT NOTES COMPUT SC, V5058, P209, DOI 10.1007/978-3-540-69355-0_18
  • [10] Jia MK, 2014, IEEE CONF COMPUT, P352, DOI 10.1109/INFCOMW.2014.6849257