A general stability result for swelling porous elastic media with nonlinear damping

被引:5
作者
Apalara, T. [1 ]
Soufyane, A. [2 ]
Afilal, M. [3 ]
Alahyane, M. [4 ]
机构
[1] Univ Hafr Al Batin UHB, Math Dept Hafr Al Batin, Hafar al Batin, Saudi Arabia
[2] Univ Sharjah, Coll Sci, Dept Math, Sharjah, U Arab Emirates
[3] Univ Cadi Ayyad, Fac Polydisciplinaire Safi, Dept Math & Informat, Marrakech, Morocco
[4] Univ Sharjah, Dept Math, RISE, Sharjah, U Arab Emirates
关键词
Swelling porous problem; nonlinear damping; general decay; EXPONENTIAL STABILITY; SOILS;
D O I
10.1080/00036811.2021.1979218
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a swelling porous-elastic system with a single nonlinear damping in the elastic equation. Recently, Ramos et al. [Stability results for elastic porous media swelling with nonlinear damping. J Math Phys. 2020;61(10):101505.] considered the same system and established a general decay result provided that the wave speeds of the system are equal. In this paper, we obtain the general decay result without imposing a condition on the wave speeds of the system. This is a striking and unexpected result compared to Timoshenko system, porous systems, and Laminated beams system with similar damping. We also perform some numerical tests to illustrate our theoretical results.
引用
收藏
页码:1183 / 1198
页数:16
相关论文
共 13 条
[1]   On a Laminated Timoshenko Beam with Nonlinear Structural Damping [J].
Apalara, Tijani A. ;
Nass, Aminu M. ;
Al Sulaimani, Hamdan .
MATHEMATICAL AND COMPUTATIONAL APPLICATIONS, 2020, 25 (02)
[2]   A General Decay for a Weakly Nonlinearly Damped Porous System [J].
Apalara, Tijani A. .
JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2019, 25 (03) :311-322
[3]   Anti-plane shear deformations of swelling porous elastic soils [J].
Bofill, F ;
Quintanilla, R .
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2003, 41 (08) :801-816
[4]   ON THE THEORY OF MIXTURES OF THERMOELASTIC SOLIDS [J].
IESAN, D .
JOURNAL OF THERMAL STRESSES, 1991, 14 (04) :389-408
[5]   On the stabilization of the Timoshenko system by a weak nonlinear dissipation [J].
Messaoudi, Salim A. ;
Mustafa, Muhammad I. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2009, 32 (04) :454-469
[6]   Thermomechanical theories for swelling porous media with microstructure [J].
Murad, MA ;
Cushman, JH .
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2000, 38 (05) :517-564
[7]  
Pazy A., 1983, SEMIGROUPS LINEAR OP, P44, DOI DOI 10.1007/978-1-4612-5561-1
[8]   Existence and exponential decay in the linear theory of viscoelastic mixtures [J].
Quintanilla, R .
EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2005, 24 (02) :311-324
[9]   Exponential stability of solutions of swelling porous elastic soils [J].
Quintanilla, R .
MECCANICA, 2004, 39 (02) :139-145
[10]   Exponential stability for one-dimensional problem of swelling porous elastic soils with fluid saturation [J].
Quintanilla, R .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 145 (02) :525-533