A first-principles study of 2D single-layer SiP as anode materials for lithium-ion batteries and sodium-ion batteries

被引:7
|
作者
Xing, Yingying [1 ]
Cao, Chihao [1 ]
Huang, Zhong [1 ]
Huang, Liang [1 ]
Zhang, Haijun [1 ]
Jia, Quanli [2 ]
机构
[1] Wuhan Univ Sci & Technol, Sch Mat & Met, State Key Lab Refractories & Met, Wuhan 430081, Peoples R China
[2] Zhengzhou Univ, Henan Key Lab High Temp Funct Ceram, Zhengzhou 450052, Peoples R China
基金
中国国家自然科学基金;
关键词
GENERALIZED GRADIENT APPROXIMATION; CAPACITY ELECTRODE MATERIAL; NEGATIVE ELECTRODE; SILICON; COMPOSITE; CARBON; TRANSITION; STORAGE; MOS2; NANOPARTICLES;
D O I
10.1039/d3cp05164a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The promotion of lithium-ion batteries and sodium-ion batteries is limited by the deficiency of suitable anode materials with desired electrochemical properties. In this work, the models of 2D single-layer SiP are constructed to explore its potential as an anode material for LIBs and SIBs using density functional theory (DFT). The diffusion of Li in bulk SiP is anisotropic. There is a low diffusion energy barrier of 0.28 eV along the X-axis. The low surface exfoliation energy suggests that there is a high probability of preparing 2D single-layer SiP experimentally. Its structure stability is verified by ab initio molecular dynamics (AIMD) simulations at 300 K and 400 K. The intercalation and diffusion behaviors of Li/Na on 2D single-layer SiP indicate that Li/Na tends to diffuse along the X-axis direction of 2D single-layer SiP. The diffusion energy barrier of Li/Na on 2D single-layer SiP is lower compared to that of bulk SiP. The conductivity of 2D single-layer SiP is improved after lithiation due to the upshift of Fermi levels. 2D single-layer SiP has a lower average open circuit voltage (1.50 V for LIBs and 1.08 V for SIBs) and a high theoretical capacity (520 mA h g-1). Hence, 2D single-layer SiP can be an ideal anode material for LIBs and SIBs. 2D single-layer SiP as an anode material of LIBs and SIBs has a low diffusion energy barrier.
引用
收藏
页码:7072 / 7082
页数:11
相关论文
共 50 条
  • [31] Advancements in Graphite Anodes for Lithium-Ion and Sodium-Ion Batteries: A Review
    Xiong, Kai
    Qi, Tianshuang
    Zhang, Xiong
    ELECTROANALYSIS, 2025, 37 (01)
  • [32] Comparison of reduction products from graphite oxide and graphene oxide for anode applications in lithium-ion batteries and sodium-ion batteries
    Sun, Yige
    Tang, Jie
    Zhang, Kun
    Yuan, Jinshi
    Li, Jing
    Zhu, Da-Ming
    Ozawa, Kiyoshi
    Qin, Lu-Chang
    NANOSCALE, 2017, 9 (07) : 2585 - 2595
  • [33] Semi-metallic bilayer borophene for lithium-ion batteries anode material: A first-principles study
    Chen, Miaogen
    Dai, Yilian
    Li, Taotao
    Zhang, Xiaofei
    Li, Can
    Zhang, Jing
    CHEMICAL PHYSICS, 2023, 571
  • [34] Recent developments in centrifugally spun composite fibers and their performance as anode materials for lithium-ion and sodium-ion batteries
    Chavez, Roberto Orrostieta
    Lodge, Timothy P.
    Alcoutlabi, Mataz
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2021, 266
  • [35] Germanene nanosheets as a novel anode material for sodium-ion batteries-a first-principles investigation
    Bhuvaneswari, R.
    Nagarajan, V
    Chandiramouli, R.
    MATERIALS RESEARCH EXPRESS, 2019, 6 (03)
  • [36] First-principles calculations of SnCo as potential anode materials for high-performance lithium-ion batteries and beyond
    Huang, Zhuonan
    Zhang, Meiguang
    THEORETICAL CHEMISTRY ACCOUNTS, 2023, 142 (04)
  • [37] Tin-Germanium Alloys as Anode Materials for Sodium-Ion Batteries
    Abel, Paul R.
    Fields, Meredith G.
    Heller, Adam
    Mullins, C. Buddie
    ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (18) : 15860 - 15867
  • [38] Monolayer Honeycomb Borophene: A Promising Anode Material with a Record Capacity for Lithium-Ion and Sodium-Ion Batteries
    Li, Jingzhen
    Tritsaris, Georgios A.
    Zhang, Xiuying
    Shi, Bowen
    Yang, Chen
    Liu, Shiqi
    Yang, Jie
    Xu, Linqiang
    Yang, Jinbo
    Pan, Feng
    Kaxiras, Efthimios
    Lu, Jing
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (09)
  • [39] First principles study of P-doped borophene as anode materials for lithium ion batteries
    Chen, Hui
    Zhang, Wei
    Tang, Xian-Qiong
    Ding, Yan-Huai
    Yin, Jiu-Ren
    Jiang, Yong
    Zhang, Ping
    Jin, Haibao
    APPLIED SURFACE SCIENCE, 2018, 427 : 198 - 205
  • [40] A Novel Membrane-like 2D A'-MoS2 as Anode for Lithium- and Sodium-Ion Batteries
    Sukhanova, Ekaterina V.
    Bereznikova, Liudmila A.
    Manakhov, Anton M.
    Al Qahtani, Hassan S.
    Popov, Zakhar I.
    MEMBRANES, 2022, 12 (11)