Genome homeostasis defects drive enlarged cells into senescence

被引:24
作者
Manohar, Sandhya [1 ]
Estrada, Marianna E. [1 ]
Uliana, Federico [1 ]
Vuina, Karla [2 ]
Alvarez, Patricia Moyano [1 ]
de Bruin, Robertus A. M. [2 ,3 ]
Neurohr, Gabriel E. [1 ]
机构
[1] Swiss Fed Inst Technol, Inst Biochem, Dept Biol, CH-8093 Zurich, Switzerland
[2] UCL, Lab Mol Cell Biol, London WC1E 6BT, England
[3] UCL, UCL Canc Inst, London WC1E 6BT, England
基金
瑞士国家科学基金会;
关键词
CELLULAR SENESCENCE; REPLICATION CHECKPOINT; DORMANT ORIGINS; EXCESS MCM2-7; P53; 53BP1; CYCLE; ARREST; CANCER; REPAIR;
D O I
10.1016/j.molcel.2023.10.018
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Cellular senescence refers to an irreversible state of cell-cycle arrest and plays important roles in aging and cancer biology. Because senescence is associated with increased cell size, we used reversible cell-cycle ar-rests combined with growth rate modulation to study how excessive growth affects proliferation. We find that enlarged cells upregulate p21, which limits cell-cycle progression. Cells that re-enter the cell cycle encounter replication stress that is well tolerated in physiologically sized cells but causes severe DNA damage in enlarged cells, ultimately resulting in mitotic failure and permanent cell-cycle withdrawal. We demonstrate that enlarged cells fail to recruit 53BP1 and other non-homologous end joining (NHEJ) machinery to DNA damage sites and fail to robustly initiate DNA damage-dependent p53 signaling, rendering them highly sen-sitive to genotoxic stress. We propose that an impaired DNA damage response primes enlarged cells for persistent replication-acquired damage, ultimately leading to cell division failure and permanent cell -cy-cle exit.
引用
收藏
页码:4032 / +
页数:22
相关论文
共 83 条
  • [1] p21 in cancer: intricate networks and multiple activities
    Abbas, Tarek
    Dutta, Anindya
    [J]. NATURE REVIEWS CANCER, 2009, 9 (06) : 400 - 414
  • [2] HMGB2 orchestrates the chromatin landscape of senescence-associated secretory phenotype gene loci
    Aird, Katherine M.
    Iwasaki, Osamu
    Kossenkov, Andrew V.
    Tanizawa, Hideki
    Fatkhutdinov, Nail
    Bitler, Benjamin G.
    Le, Linh
    Alicea, Gretchen
    Yang, Ting-Lin
    Johnson, Brad
    Noma, Ken-ichi
    Zhang, Rugang
    [J]. JOURNAL OF CELL BIOLOGY, 2016, 215 (03) : 325 - 334
  • [3] Anglada T, 2020, AGING-US, V12, P24872, DOI 10.18632/aging.202419
  • [4] Non-homologous end-joining at challenged replication forks: an RNA connection?
    Audoynaud, Charlotte
    Vagner, Stephan
    Lambert, Sarah
    [J]. TRENDS IN GENETICS, 2021, 37 (11) : 973 - 985
  • [5] CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING
    BENJAMINI, Y
    HOCHBERG, Y
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) : 289 - 300
  • [6] Quantitative identification of senescent cells in aging and disease
    Biran, Anat
    Zada, Lior
    Abou Karam, Paula
    Vadai, Ezra
    Roitman, Lior
    Ovadya, Yossi
    Porat, Ziv
    Krizhanovsky, Valery
    [J]. AGING CELL, 2017, 16 (04): : 661 - 671
  • [7] ATM, ATR, and DNA-PK: The Trinity at the Heart of the DNA Damage Response
    Blackford, Andrew N.
    Jackson, Stephen P.
    [J]. MOLECULAR CELL, 2017, 66 (06) : 801 - 817
  • [8] Structural basis for the methylation state-specific recognition of histone H4-K20 by 53BP1 and Crb2 in DNA repair
    Botuyan, Maria Victoria
    Lee, Joseph
    Ward, Irene M.
    Kim, Ja-Eun
    Thompson, James R.
    Chen, Junjie
    Mer, Georges
    [J]. CELL, 2006, 127 (07) : 1361 - 1373
  • [9] Cellular senescence: when bad things happen to good cells
    Campisi, Judith
    di Fagagna, Fabrizio d'Adda
    [J]. NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2007, 8 (09) : 729 - 740
  • [10] Replication checkpoint: Preventing mitotic catastrophe
    Canman, CE
    [J]. CURRENT BIOLOGY, 2001, 11 (04) : R121 - R124