Explainable AI models for predicting drop coalescence in microfluidics device

被引:16
作者
Hu, Jinwei [1 ]
Zhu, Kewei [2 ]
Cheng, Sibo [3 ]
Kovalchuk, Nina M. [4 ]
Soulsby, Alfred [4 ]
Simmons, Mark J. H. [4 ]
Matar, Omar K. [5 ]
Arcucci, Rossella [1 ]
机构
[1] Imperial Coll London, Dept Earth Sci & Engn, London, England
[2] Univ York, Dept Comp Sci, Heslington, England
[3] Imperial Coll London, Data Sci Inst, Dept Comp, London, England
[4] Univ Birmingham, Sch Chem Engn, Birmingham, England
[5] Imperial Coll London, Dept Chem Engn, London, England
基金
英国工程与自然科学研究理事会;
关键词
Explainable AI; Drop coalescence; Machine learning; LIME; SHAP value; MACHINE; EXPLANATIONS; MICROCHANNEL; PARTICLES; SHEAR;
D O I
10.1016/j.cej.2023.148465
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In the field of chemical engineering, understanding the dynamics and probability of drop coalescence is not just an academic pursuit, but a critical requirement for advancing process design by applying energy only where it is needed to build necessary interfacial structures, increasing efficiency towards Net Zero manufacture. This research applies machine learning predictive models to unravel the sophisticated relationships embedded in the experimental data on drop coalescence in a microfluidics device. Through the deployment of SHapley Additive exPlanations values, critical features relevant to coalescence processes are consistently identified. Comprehensive feature ablation tests further delineate the robustness and susceptibility of each model. Furthermore, the incorporation of Local Interpretable Model -agnostic Explanations for local interpretability offers an elucidative perspective, clarifying the intricate decision -making mechanisms inherent to each model's predictions. As a result, this research provides the relative importance of the features for the outcome of drop interactions. It also underscores the pivotal role of model interpretability in reinforcing confidence in machine learning predictions of complex physical phenomena that are central to chemical engineering applications.
引用
收藏
页数:16
相关论文
共 89 条
[1]   Exploring the effects of approach velocity on depletion force and coalescence in oil-in-water emulsions [J].
Aaroen, Ola ;
Riccardi, Enrico ;
Sletmoen, Marit .
RSC ADVANCES, 2021, 11 (15) :8730-8740
[2]   Numerical investigation of elongated drops in a microfluidic T-junction [J].
Afkhami, S. ;
Leshansky, A. M. ;
Renardy, Y. .
PHYSICS OF FLUIDS, 2011, 23 (02)
[3]   Chemically induced coalescence in droplet-based microfluidics [J].
Akartuna, Ilke ;
Aubrecht, Donald M. ;
Kodger, Thomas E. ;
Weitz, David A. .
LAB ON A CHIP, 2015, 15 (04) :1140-1144
[4]   Current Challenges and Future Opportunities for XAI in Machine Learning-Based Clinical Decision Support Systems: A Systematic Review [J].
Antoniadi, Anna Markella ;
Du, Yuhan ;
Guendouz, Yasmine ;
Wei, Lan ;
Mazo, Claudia ;
Becker, Brett A. ;
Mooney, Catherine .
APPLIED SCIENCES-BASEL, 2021, 11 (11)
[5]   Opening the Black Box: Interpretable Machine Learning for Geneticists [J].
Azodi, Christina B. ;
Tang, Jiliang ;
Shiu, Shin-Han .
TRENDS IN GENETICS, 2020, 36 (06) :442-455
[6]   Dynamics of microfluidic droplets [J].
Baroud, Charles N. ;
Gallaire, Francois ;
Dangla, Remi .
LAB ON A CHIP, 2010, 10 (16) :2032-2045
[7]   Coalescence dynamics in oil-in-water emulsions at elevated temperatures [J].
Bera, Bijoy ;
Khazal, Rama ;
Schroen, Karin .
SCIENTIFIC REPORTS, 2021, 11 (01)
[8]  
Berrar D., 2019, Encyclopedia of Bioinformaticsand Computational Biology: Cross-Validation
[9]   Towards new food emulsions: designing the interface and beyond [J].
Berton-Carabin, Claire ;
Schroen, Karin .
CURRENT OPINION IN FOOD SCIENCE, 2019, 27 :74-81
[10]   Full waveform inversion based on the non-parametric estimate of the probability distribution of the residuals [J].
Carvalho, P. T. C. ;
da Silva, S. L. E. F. ;
Duarte, E. F. ;
Brossier, R. ;
Corso, G. ;
de Araujo, J. M. .
GEOPHYSICAL JOURNAL INTERNATIONAL, 2022, 229 (01) :35-55