Hyperspectral image super resolution using deep internal and self-supervised learning

被引:1
|
作者
Liu, Zhe [1 ]
Han, Xian-Hua [2 ,3 ]
机构
[1] Yamaguchi Univ, Grad Sch Sci & Technol Innovat, Yamaguchi, Japan
[2] Rikkyo Univ, Grad Sch Artificial Intelligence & Sci, Tokyo, Japan
[3] Rikkyo Univ, Grad Sch Artificial intelligence & Sci, 3-34-1 Nishi ikebukuro, Tokyo 1718501, Japan
关键词
computer vision; deep learning; deep neural networks; hyperspectral; image enhancement; FUSION; SUPERRESOLUTION;
D O I
10.1049/cit2.12285
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
By automatically learning the priors embedded in images with powerful modelling capabilities, deep learning-based algorithms have recently made considerable progress in reconstructing the high-resolution hyperspectral (HR-HS) image. With previously collected large-amount of external data, these methods are intuitively realised under the full supervision of the ground-truth data. Thus, the database construction in merging the low-resolution (LR) HS (LR-HS) and HR multispectral (MS) or RGB image research paradigm, commonly named as HSI SR, requires collecting corresponding training triplets: HR-MS (RGB), LR-HS and HR-HS image simultaneously, and often faces difficulties in reality. The learned models with the training datasets collected simultaneously under controlled conditions may significantly degrade the HSI super-resolved performance to the real images captured under diverse environments. To handle the above-mentioned limitations, the authors propose to leverage the deep internal and self-supervised learning to solve the HSI SR problem. The authors advocate that it is possible to train a specific CNN model at test time, called as deep internal learning (DIL), by on-line preparing the training triplet samples from the observed LR-HS/HR-MS (or RGB) images and the down-sampled LR-HS version. However, the number of the training triplets extracted solely from the transformed data of the observation itself is extremely few particularly for the HSI SR tasks with large spatial upscale factors, which would result in limited reconstruction performance. To solve this problem, the authors further exploit deep self-supervised learning (DSL) by considering the observations as the unlabelled training samples. Specifically, the degradation modules inside the network were elaborated to realise the spatial and spectral down-sampling procedures for transforming the generated HR-HS estimation to the high-resolution RGB/LR-HS approximation, and then the reconstruction errors of the observations were formulated for measuring the network modelling performance. By consolidating the DIL and DSL into a unified deep framework, the authors construct a more robust HSI SR method without any prior training and have great potential of flexible adaptation to different settings per observation. To verify the effectiveness of the proposed approach, extensive experiments have been conducted on two benchmark HS datasets, including the CAVE and Harvard datasets, and demonstrate the great performance gain of the proposed method over the state-of-the-art methods.
引用
收藏
页码:128 / 141
页数:14
相关论文
共 50 条
  • [1] Deep Self-Supervised Hyperspectral Image Reconstruction
    Liu, Zhe
    Han, Xian-Hua
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2022, 18 (03)
  • [2] Deep Unpaired Blind Image Super-Resolution Using Self-supervised Learning and Exemplar Distillation
    Dong, Jiangxin
    Bai, Haoran
    Tang, Jinhui
    Pan, Jinshan
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2023,
  • [3] Self-Supervised Deep Blind Video Super-Resolution
    Bai, Haoran
    Pan, Jinshan
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (07) : 4641 - 4653
  • [4] DEEP SELF-SUPERVISED LEARNING FOR FEW-SHOT HYPERSPECTRAL IMAGE CLASSIFICATION
    Li, Yu
    Zhang, Lei
    Wei, Wei
    Zhang, Yanning
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 501 - 504
  • [5] Self-supervised memory learning for scene text image super-resolution
    Guo, Kehua
    Zhu, Xiangyuan
    Schaefer, Gerald
    Ding, Rui
    Fang, Hui
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 258
  • [6] Supervise-Assisted Self-Supervised Deep-Learning Method for Hyperspectral Image Restoration
    Li, Miaoyu
    Fu, Ying
    Zhang, Tao
    Wen, Guanghui
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, : 1 - 14
  • [7] A Review of Hyperspectral Image Super-Resolution Based on Deep Learning
    Chen, Chi
    Wang, Yongcheng
    Zhang, Ning
    Zhang, Yuxi
    Zhao, Zhikang
    REMOTE SENSING, 2023, 15 (11)
  • [8] Hyperspectral Image Super-Resolution with Self-Supervised Spectral-Spatial Residual Network
    Chen, Wenjing
    Zheng, Xiangtao
    Lu, Xiaoqiang
    REMOTE SENSING, 2021, 13 (07)
  • [9] Decoupled-and-Coupled Networks: Self-Supervised Hyperspectral Image Super-Resolution With Subpixel Fusion
    Hong, Danfeng
    Yao, Jing
    Li, Chenyu
    Meng, Deyu
    Yokoya, Naoto
    Chanussot, Jocelyn
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [10] SELF-SUPERVISED DEEP LEARNING FOR FISHEYE IMAGE RECTIFICATION
    Chao, Chun-Hao
    Hsu, Pin-Lun
    Lee, Hung-Yi
    Wang, Yu-Chiang Frank
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 2248 - 2252