SS-MAE: Spatial–Spectral Masked Autoencoder for Multisource Remote Sensing Image Classification

被引:31
|
作者
Lin, Junyan [1 ]
Gao, Feng [1 ]
Shi, Xiaochen [1 ]
Dong, Junyu [1 ]
Du, Qian [2 ]
机构
[1] Ocean Univ China, Sch Comp Sci & Technol, Qingdao 266100, Peoples R China
[2] Mississippi State Univ, Dept Elect & Comp Engn, Starkville, MS 39762 USA
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2023年 / 61卷
关键词
Image reconstruction; Feature extraction; Transformers; Image classification; Training; Decoding; Self-supervised learning; Deep learning; hyperspectral image (HSI); masked autoencoder (MAE); multisource data; DECISION FUSION;
D O I
10.1109/TGRS.2023.3331717
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Masked image modeling (MIM) is a highly popular and effective self-supervised learning method for image understanding. The existing MIM-based methods mostly focus on spatial feature modeling, neglecting spectral feature modeling. Meanwhile, the existing MIM-based methods use Transformer for feature extraction, and some local or high-frequency information may get lost. To this end, we propose a spatial-spectral masked autoencoder (SS-MAE) for hyperspectral image (HSI) and light detection and ranging (LiDAR)/synthetic aperture radar (SAR) data joint classification. Specifically, SS-MAE consists of a spatialwise branch and a spectralwise branch. The spatialwise branch masks random patches and reconstructs missing pixels, while the spectralwise branch masks random spectral channels and reconstructs missing channels. Our SS-MAE fully exploits the spatial and spectral representations of the input data. Furthermore, to complement local features in the training stage, we add two lightweight convolutional nerual networks (CNNs) for feature extraction. Both global and local features are taken into account for feature modeling. To demonstrate the effectiveness of the proposed SS-MAE, we conduct extensive experiments on three publicly available datasets. Extensive experiments on three multisource datasets verify the superiority of our SS-MAE compared with several state-of-the-art baselines. The source codes are available at https://github.com/summitgao/SS-MAE.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 50 条
  • [1] A Universal Representation Mechanism for Multisource Remote Sensing Image
    Kong, Weili
    Liu, Baisen
    Bi, Xiaojun
    He, Yihan
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21
  • [2] SpectralMAE: Spectral Masked Autoencoder for Hyperspectral Remote Sensing Image Reconstruction
    Zhu, Lingxuan
    Wu, Jiaji
    Biao, Wang
    Liao, Yi
    Gu, Dandan
    SENSORS, 2023, 23 (07)
  • [3] LFSMIM: A Low-Frequency Spectral Masked Image Modeling Method for Hyperspectral Image Classification
    Chen, Yuhan
    Yan, Qingyun
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21 : 1 - 5
  • [4] Spectral-Spatial Masked Transformer With Supervised and Contrastive Learning for Hyperspectral Image Classification
    Huang, Lingbo
    Chen, Yushi
    He, Xin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [5] Multiscale Spectral-Spatial Attention Residual Fusion Network for Multisource Remote Sensing Data Classification
    Wang, Xu
    Liu, Gang
    Li, Ke
    Dang, Min
    Wang, Di
    Wu, Zili
    Pan, Rong
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 7501 - 7515
  • [6] MSFMamba: Multiscale Feature Fusion State Space Model for Multisource Remote Sensing Image Classification
    Gao, Feng
    Jin, Xuepeng
    Zhou, Xiaowei
    Dong, Junyu
    Du, Qian
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2025, 63
  • [7] Masked Spectral-Spatial Feature Prediction for Hyperspectral Image Classification
    Zhou, Feng
    Xu, Chao
    Yang, Guowei
    Hang, Renlong
    Liu, Qingshan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 13
  • [8] Cross-Domain Classification of Multisource Remote Sensing Data Using Fractional Fusion and Spatial-Spectral Domain Adaptation
    Zhao, Xudong
    Zhang, Mengmeng
    Tao, Ran
    Li, Wei
    Liao, Wenzhi
    Philips, Wilfried
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 5721 - 5733
  • [9] GO-MAE: Self-supervised pre-training via masked autoencoder for OCT image classification of gynecology
    Wang, Haoran
    Guo, Xinyu
    Song, Kaiwen
    Sun, Mingyang
    Shao, Yanbin
    Xue, Songfeng
    Zhang, Hongwei
    Zhang, Tianyu
    NEURAL NETWORKS, 2025, 181
  • [10] Multisource Collaborative Domain Generalization for Cross-Scene Remote Sensing Image Classification
    Han, Zhu
    Zhang, Ce
    Gao, Lianru
    Zeng, Zhiqiang
    Ng, Michael K.
    Zhang, Bing
    Chanussot, Jocelyn
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62