Multi-objective optimization of permanent magnet motors using deep learning and CMA-ES

被引:0
|
作者
Mikami, Ryosuke [1 ]
Sato, Hayaho [1 ]
Hayashi, Shogo [1 ]
Igarashi, Hajime [1 ]
机构
[1] Hokkaido Univ, Grad Sch Informat Sci & Technol, Sapporo, Hokkaido 0600814, Japan
关键词
Deep learning; CNN; multi-objective optimization; CMA-ES; NSGA-II; PM motor;
D O I
10.3233/JAE-230077
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper proposes a multi-objective optimization method for permanent magnet motors using a fast optimization algorithm, Covariance Matrix Adaptation Evolution Strategy (CMA-ES), and deep learning. Multi-objective optimization with topology optimization is effective in the design of permanent magnet motors. Although CMA-ES needs fewer population size than genetic algorithm for single objective problems, this is not evident for multi-objective problems. For this reason, the proposed method generates training data by solving the single-objective optimization multiple times using CMA-ES, and constructs a deep neural network (NN) based on the data to predict performance from motor images at high speed. The deep NN is then used for fast solution of multi-objective optimization problems. Numerical examples demonstrate the effectiveness of the proposed method.
引用
收藏
页码:255 / 264
页数:10
相关论文
共 50 条
  • [41] Electromagnetic Design Optimization using Mixed-Parameter and Multiobjective CMA-ES
    BouDaher, Elie
    Hoorfar, Ahmad
    2013 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM (APSURSI), 2013, : 406 - 407
  • [42] Topology Optimization of Plasmonic Device Using Function Expansion Method and CMA-ES
    Tsuji, Y.
    Morimoto, K.
    Iguchi, A.
    Kashiwa, T.
    2022 3RD URSI ATLANTIC AND ASIA PACIFIC RADIO SCIENCE MEETING (AT-AP-RASC), 2022,
  • [43] Marginal Probability-Based Integer Handling for CMA-ES Tackling Single- and Multi-Objective Mixed-Integer Black-Box Optimization
    Hamano R.
    Saito S.
    Nomura M.
    Shirakawa S.
    ACM Transactions on Evolutionary Learning and Optimization, 2024, 4 (02):
  • [44] A Robust Optimization Approach using Kriging Metamodels for Robustness Approximation in the CMA-ES
    Kruisselbrink, Johannes W.
    Emmerich, Michael T. M.
    Deutz, Andre H.
    Back, Thomas
    2010 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2010,
  • [45] Optimization of NOX emissions of a CRDI DIESEL engine using CMA-ES method
    Berk, Seyfullah
    Alptekin, Ertan
    INTERNATIONAL JOURNAL OF ENGINE RESEARCH, 2024, 25 (12) : 2184 - 2203
  • [46] Multi-Objective Optimization Design of a Multi-Permanent-Magnet Motor Considering Magnet Characteristic Variation Effects
    Zheng, Shiyue
    Zhu, Xiaoyong
    Xu, Lei
    Xiang, Zixuan
    Quan, Li
    Yu, Baoxin
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2022, 69 (04) : 3428 - 3438
  • [47] Learning Impulse-Reduced Gait for Quadruped Robot using CMA-ES
    Ahn, Jaesung
    Im, Euncheol
    Lee, Yisoo
    2023 20TH INTERNATIONAL CONFERENCE ON UBIQUITOUS ROBOTS, UR, 2023, : 261 - 266
  • [48] Improved Fuzzy-Based Taguchi Method for Multi-Objective Optimization of Direct-Drive Permanent Magnet Synchronous Motors
    Guo, Youquan
    Si, Jikai
    Gao, Caixia
    Feng, Haichao
    Gan, Chun
    IEEE TRANSACTIONS ON MAGNETICS, 2019, 55 (06)
  • [49] A novel method for micropollutant quantification using deep learning and multi-objective optimization
    Yun, Daeun
    Kang, Daeho
    Jang, Jiyi
    Angeles, Anne Therese
    Pyo, JongCheol
    Jeon, Junho
    Baek, Sang-Soo
    Cho, Kyung Hwa
    WATER RESEARCH, 2022, 212
  • [50] Investigating the multi-objective optimization of quality and efficiency using deep reinforcement learning
    Wang, Zhenhui
    Lu, Juan
    Chen, Chaoyi
    Ma, Junyan
    Liao, Xiaoping
    APPLIED INTELLIGENCE, 2022, 52 (11) : 12873 - 12887