Multi-objective optimization of permanent magnet motors using deep learning and CMA-ES

被引:0
|
作者
Mikami, Ryosuke [1 ]
Sato, Hayaho [1 ]
Hayashi, Shogo [1 ]
Igarashi, Hajime [1 ]
机构
[1] Hokkaido Univ, Grad Sch Informat Sci & Technol, Sapporo, Hokkaido 0600814, Japan
关键词
Deep learning; CNN; multi-objective optimization; CMA-ES; NSGA-II; PM motor;
D O I
10.3233/JAE-230077
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper proposes a multi-objective optimization method for permanent magnet motors using a fast optimization algorithm, Covariance Matrix Adaptation Evolution Strategy (CMA-ES), and deep learning. Multi-objective optimization with topology optimization is effective in the design of permanent magnet motors. Although CMA-ES needs fewer population size than genetic algorithm for single objective problems, this is not evident for multi-objective problems. For this reason, the proposed method generates training data by solving the single-objective optimization multiple times using CMA-ES, and constructs a deep neural network (NN) based on the data to predict performance from motor images at high speed. The deep NN is then used for fast solution of multi-objective optimization problems. Numerical examples demonstrate the effectiveness of the proposed method.
引用
收藏
页码:255 / 264
页数:10
相关论文
共 50 条
  • [1] Anytime Bi-Objective Optimization with a Hybrid Multi-Objective CMA-ES (HMO-CMA-ES)
    Loshchilov, Ilya
    Glasmachers, Tobias
    PROCEEDINGS OF THE 2016 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'16 COMPANION), 2016, : 1169 - 1176
  • [2] Active Covariance Matrix Adaptation for multi-objective CMA-ES
    Krimpmann, Christoph
    Braun, Jan
    Hoffmann, Frank
    Bertram, Torsten
    2013 SIXTH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTATIONAL INTELLIGENCE (ICACI), 2013, : 189 - 194
  • [3] Investigation of Strategies for an Increasing Population Size in Multi-objective CMA-ES
    Limmer, Steffen
    Fey, Dietmar
    2016 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2016, : 476 - 483
  • [4] Transfer weight functions for injecting problem information in the multi-objective CMA-ES
    Olacir R. Castro
    Aurora Pozo
    Jose A. Lozano
    Roberto Santana
    Memetic Computing, 2017, 9 : 153 - 180
  • [5] Transfer weight functions for injecting problem information in the multi-objective CMA-ES
    Castro, Olacir R., Jr.
    Pozo, Aurora
    Lozano, Jose A.
    Santana, Roberto
    MEMETIC COMPUTING, 2017, 9 (02) : 153 - 180
  • [6] Steady-state selection and efficient covariance matrix update in the multi-objective CMA-ES
    Igel, Christian
    Suttorp, Thorsten
    Hansen, Nikolaus
    EVOLUTIONARY MULTI-CRITERION OPTIMIZATION, PROCEEDINGS, 2007, 4403 : 171 - +
  • [7] Multi-objective optimization of permanent magnet motor using Taguchi method
    Hot, K
    Bodlovic, P
    Computer Engineering in Applied Electromagnetism, 2005, : 53 - 58
  • [8] Combining CMA-ES and MOEA/DD for many-objective optimization
    Castro, Olacir R., Jr.
    Lozano, Jose A.
    Santana, Roberto
    Pozo, Aurora
    2017 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2017, : 1451 - 1458
  • [9] A Novel Population-based Multi-Objective CMA-ES and the Impact of Different Constraint Handling Techniques
    Rodrigues, Silvio
    Bauer, Pavol
    Bosman, Peter A. N.
    GECCO'14: PROCEEDINGS OF THE 2014 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2014, : 991 - 998
  • [10] Multi-Objective Optimization Analysis of Electromagnetic Performance of Permanent Magnet Synchronous Motors Based on the PSO Algorithm
    Cen, Yufei
    Shen, Haoyu
    Wang, Xiaoyuan
    Wu, Yongming
    Du, Jingjuan
    ENERGIES, 2024, 17 (18)