Experimental observation of multifractality in Fibonacci chains

被引:5
|
作者
Reisner, Mattis [1 ]
Tahmi, Yanel [1 ]
Piechon, Frederic [2 ]
Kuhl, Ulrich [1 ]
Mortessagne, Fabrice [1 ]
机构
[1] Univ Cote Azur, Inst Phys Nice INPHYNI, CNRS, Nice, France
[2] Univ Paris Saclay, Lab Phys Solides, F-91400 Orsay, France
关键词
WAVE-FUNCTIONS; PENROSE LATTICE; SPECTRUM; STATES; LOCALIZATION; DIMENSIONS; DIFFUSION; ELECTRONS;
D O I
10.1103/PhysRevB.108.064210
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The tight-binding model for a chain, where the hopping constants follow a Fibonacci sequence, predicts multifractality in the spectrum and wave functions. Experimentally, we realize this model by chains of small dielectric resonators with a high refractive index (Er ti 45) of cylindrical form that exhibit evanescent coupling. We show that the fractality of the measured local density of state (LDOS) is best understood when the sites are rearranged according to the similarities in their local surrounding, i.e., their conumbers. This allows us to deduce simple recursive construction schemes for the LDOS for the two cases of dominant strong and weak coupling, despite our limited resolution due to nonzero resonance width and size constraints. We measure the singularity spectrum and the fractal dimensions of the wave functions, and we find good agreement with theoretical predictions for the multifractality based on a perturbative description in the quasiperiodic limit.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Spectral properties of two coupled Fibonacci chains
    Moustaj, Anouar
    Roentgen, Malte
    Morfonios, Christian, V
    Schmelcher, Peter
    Smith, Cristiane Morais
    NEW JOURNAL OF PHYSICS, 2023, 25 (09):
  • [2] Aubry-Andre-Harper model: multifractality analysis versus Landauer conductance for quasicrystal chains
    Kaya, Tuncer
    INDIAN JOURNAL OF PHYSICS, 2024, 98 (02) : 489 - 496
  • [3] Observation of Multifractality in Anderson Localization of Ultrasound
    Faez, Sanli
    Strybulevych, Anatoliy
    Page, John H.
    Lagendijk, Ad
    van Tiggelen, Bart A.
    PHYSICAL REVIEW LETTERS, 2009, 103 (15)
  • [4] Anomalous multifractality in quantum chains with strongly correlated disorder
    Duthie, Alexander
    Roy, Sthitadhi
    Logan, David E.
    PHYSICAL REVIEW B, 2022, 106 (02)
  • [5] Surface electromagnetic waves in Fibonacci superlattices: Theoretical and experimental results
    El Hassouani, Y.
    Aynaou, H.
    El Boudouti, E. H.
    Djafari-Rouhani, B.
    Akjouj, A.
    Velasco, V. R.
    PHYSICAL REVIEW B, 2006, 74 (03)
  • [6] Kondo necklace model in approximants of Fibonacci chains
    Reyes, Daniel
    Tarazona, H.
    Cuba-Supanta, G.
    Landauro, C. V.
    Espinoza, R.
    Quispe-Marcatoma, J.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2017, 441 : 85 - 87
  • [7] Multifractality of correlated two-particle bound states in quasiperiodic chains
    Thongjaomayum, Diana
    Flach, Sergej
    Andreanov, Alexei
    PHYSICAL REVIEW B, 2020, 101 (17)
  • [8] Emergence of multifractality through cascadelike transitions in a mosaic interpolating Aubry-Andre-Fibonacci chain
    Dai, Qi
    Lu, Zhanpeng
    Xu, Zhihao
    PHYSICAL REVIEW B, 2023, 108 (14)
  • [9] Unraveling multifractality and mobility edges in quasiperiodic Aubry-André-Harper chains through high-harmonic generation
    Dziurawiec, Marlena
    de Almeida, Jessica O.
    Bera, Mohit Lal
    Plodzien, Marcin
    Maska, Maciej M.
    Lewenstein, Maciej
    Grass, Tobias
    Bhattacharya, Utso
    PHYSICAL REVIEW B, 2024, 110 (01)
  • [10] Experimental Observation of Interorbital Coupling
    Guzman-Silva, Diego
    Caceres-Aravena, Gabriel
    Vicencio, Rodrigo A.
    PHYSICAL REVIEW LETTERS, 2021, 127 (06)