RSS-LIWOM: Rotating Solid-State LiDAR for Robust LiDAR-Inertial-Wheel Odometry and Mapping

被引:1
作者
Gong, Shunjie [1 ]
Shi, Chenghao [1 ]
Zhang, Hui [1 ]
Lu, Huimin [1 ]
Zeng, Zhiwen [1 ]
Chen, Xieyuanli [1 ]
机构
[1] Natl Univ Def Technol, Coll Intelligence Sci & Technol, Changsha 410073, Peoples R China
基金
美国国家科学基金会;
关键词
LiDAR; odometry and mapping; SLAM; urban environment; REGISTRATION; ACCURATE; LIO;
D O I
10.3390/rs15164040
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Solid-state LiDAR offers multiple advantages over mechanism mechanical LiDAR, including higher durability, improved coverage ratio, and lower prices. However, solid-state LiDARs typically possess a narrow field of view, making them less suitable for odometry and mapping systems, especially for mobile autonomous systems. To address this issue, we propose a novel rotating solid-state LiDAR system that incorporates a servo motor to continuously rotate the solid-state LiDAR, expanding the horizontal field of view to 360 degrees. Additionally, we propose a multi-sensor fusion odometry and mapping algorithm for our developed sensory system that integrates an IMU, wheel encoder, motor encoder and the LiDAR into an iterated Kalman filter to obtain a robust odometry estimation. Through comprehensive experiments, we demonstrate the effectiveness of our proposed approach in both outdoor open environments and narrow indoor environments.
引用
收藏
页数:21
相关论文
共 52 条
[1]   Faster-LIO: Lightweight Tightly Coupled Lidar-Inertial odometry Using Parallel Sparse Incremental Voxels [J].
Bai, Chunge ;
Xiao, Tao ;
Chen, Yajie ;
Wang, Haoqian ;
Zhang, Fang ;
Gao, Xiang .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (02) :4861-4868
[2]  
Barros T, 2022, Arxiv, DOI arXiv:2106.09637
[3]   A METHOD FOR REGISTRATION OF 3-D SHAPES [J].
BESL, PJ ;
MCKAY, ND .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1992, 14 (02) :239-256
[4]  
Bry A, 2012, IEEE INT CONF ROBOT, P1, DOI 10.1109/ICRA.2012.6225295
[5]   LCDNet: Deep Loop Closure Detection and Point Cloud Registration for LiDAR SLAM [J].
Cattaneo, Daniele ;
Vaghi, Matteo ;
Valada, Abhinav .
IEEE TRANSACTIONS ON ROBOTICS, 2022, 38 (04) :2074-2093
[6]   A GNSS/LiDAR/IMU Pose Estimation System Based on Collaborative Fusion of Factor Map and Filtering [J].
Chen, Honglin ;
Wu, Wei ;
Zhang, Si ;
Wu, Chaohong ;
Zhong, Ruofei .
REMOTE SENSING, 2023, 15 (03)
[7]   An Overview on Visual SLAM: From Tradition to Semantic [J].
Chen, Weifeng ;
Shang, Guangtao ;
Ji, Aihong ;
Zhou, Chengjun ;
Wang, Xiyang ;
Xu, Chonghui ;
Li, Zhenxiong ;
Hu, Kai .
REMOTE SENSING, 2022, 14 (13)
[8]  
Chen X., 2019, P 2019 IEEE RSJ INT
[9]   Automatic Labeling to Generate Training Data for Online LiDAR-Based Moving Object Segmentation [J].
Chen, Xieyuanli ;
Mersch, Benedikt ;
Nunes, Lucas ;
Marcuzzi, Rodrigo ;
Vizzo, Ignacio ;
Behley, Jens ;
Stachniss, Cyrill .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (03) :6107-6114
[10]   OverlapNet: a siamese network for computing LiDAR scan similarity with applications to loop closing and localization [J].
Chen, Xieyuanli ;
Laebe, Thomas ;
Milioto, Andres ;
Rohling, Timo ;
Behley, Jens ;
Stachniss, Cyrill .
AUTONOMOUS ROBOTS, 2022, 46 (01) :61-81