Boron deficiency responses in maize (Zea mays L.) roots

被引:2
|
作者
Bienert, Manuela Desiree [1 ,2 ]
Junker, Astrid [3 ]
Melzer, Michael [4 ]
Altmann, Thomas [3 ]
von Wiren, Nicolaus [4 ]
Bienert, Gerd Patrick [1 ,2 ]
机构
[1] Tech Univ Munich, TUM Sch Life Sci, Crop Physiol, Alte Akad 12, D-85354 Freising Weihenstephan, Germany
[2] Tech Univ Munich, HEF World Agr Syst Ctr, Freising Weihenstephan, Germany
[3] Leibniz Inst Plant Genet & Crop Plant Res IPK, Dept Mol Genet, Seeland, Germany
[4] Leibniz Inst Plant Genet & Crop Plant Res IPK, Dept Physiol & Cell Biol, Seeland, Germany
关键词
boron deficiency; nutrient; phenotyping; root hairs; root; transport; BORIC-ACID; PROTEIN; HAIRS; AVAILABILITY; REQUIREMENT; ENCODES; SYSTEM; GROWTH; NIP5/1;
D O I
10.1002/jpln.202300173
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Background: Boron (B) is an essential micronutrient for plants. Dicot plants respond to insufficient B supply by altering root architecture and root hair growth. How root systems of rather low-B demanding monocot species such as maize (Zea mays L.) respond to B deficiency in terra has not been experimentally resolved, yet.Aims: The study aims to investigate root responses and their physiological consequences under B deficiency during the vegetative growth of maize.Methods: B73 wild-type (WT) maize and its root hairless rth3 mutant were grown under varying B supply conditions in soil columns and in an automated root phenotyping facility. Biomass data, root system architecture traits, the mineral elemental composition and molecular B-deficiency responses were quantified.Results: Though having very low leaf B concentrations, no major growth deficit, apart from chlorotic stripes on leaves, was recorded on maize root and shoot development, with or without root hairs, on B-deficient conditions. Although leaf B concentration of the rth3 mutant is significantly lower under B-deficient and under B-surplus conditions compared to the WT, the rth3 mutant neither developed a larger total root length, more fine roots nor displayed a higher expression of B uptake transporters as compensatory adaptations.Conclusions: Strikingly, maize plants did neither react with an inhibited root growth nor by a compensatory root foraging behaviour to severe B-deficient in terra growth conditions. This is rather atypical for plants. The performance and altered leaf B concentrations of rth3 mutants may be biased by secondary effects, such as an overall reduced root growth.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Physiological responses of maize (Zea mays L.) seedlings to the B chromosome
    Cheng, Nai-Yuan
    Hsu, Yi-Ting
    Lin, Tzu-Che
    Cheng, Ya-Ming
    NUCLEUS-INDIA, 2025,
  • [22] Expected responses to aggregate trait selection in maize (Zea mays L.)
    Ajala, Sam Oyewole
    JOURNAL OF FOOD AGRICULTURE & ENVIRONMENT, 2010, 8 (01): : 185 - 189
  • [23] Comparative Transcriptome Analysis of Iron and Zinc Deficiency in Maize (Zea mays L.)
    Mallikarjuna, Mallana Gowdra
    Thirunavukkarasu, Nepolean
    Sharma, Rinku
    Shiriga, Kaliyugam
    Hossain, Firoz
    Bhat, Jayant S.
    Mithra, Amitha C. R.
    Marla, Soma Sunder
    Manjaiah, Kanchikeri Math
    Rao, A. R.
    Gupta, Hari Shanker
    PLANTS-BASEL, 2020, 9 (12): : 1 - 31
  • [24] Safeners for chlorsulfuron on maize (Zea mays L.)
    Stoilkova, Gergana
    Yonova, Petranka
    QUALITY ASSURANCE AND SAFETY OF CROPS & FOODS, 2010, 2 (01) : 28 - 35
  • [25] Dwarf mutants of maize (Zea mays L.)
    Cheng, VC
    Cheng, WY
    Cheng, PC
    Walden, DB
    SCANNING, 2005, 27 (02) : 81 - 82
  • [26] THE MAIZE (Zea mays L.) AND THE MAYAN CULTURE
    Lopez Mazon, Sylvia Lorenia
    Garcia Navarrete, Gilberto
    Ibarra Gutierrez, Brenda Natalia
    BIOTECNIA, 2012, 14 (03): : 3 - 8
  • [27] Heterosis breeding in maize (Zea mays L.)
    Patel, C. G.
    Patel, D. B.
    Prajapati, N. D.
    Patel, M. D.
    Patel, K. R.
    RESEARCH ON CROPS, 2010, 11 (02) : 429 - 431
  • [28] Induced heterofertilization in maize (Zea mays L.)
    Kraptchev, B
    Kruleva, M
    Dankov, T
    MAYDICA, 2003, 48 (04): : 271 - 273
  • [29] Anther cuticle of maize (Zea mays L.)
    Cheng, PC
    Walden, DB
    SCANNING, 2005, 27 (02) : 78 - 80
  • [30] Differences of cadmium uptake and accumulation in roots of two maize varieties (Zea mays L.)
    Qu, Mengxue
    Song, Jie
    Ren, Hao
    Zhao, Bin
    Zhang, Jiwang
    Ren, Baizhao
    Liu, Peng
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2023, 30 (43) : 96993 - 97004