Theophylline (THP) is an emerging drug for chronic obstructive pulmonary disease whose side effects can be greatly affected by caffeine-containing real foods. Because an overdose of this substance can cause respiratory and neurological damage, producing a fast and accurate analytical procedure is critical. Based on a cutting-edge hybrid nanocomposite, this study was used to construct an electrochemical sensor for the accurate detection of THP. Spectroscopy and morphological investigation supported the easy synthesis of tetragonal-LaVO4 (t-LV) nanopellets and LV@CNF hybrid nanocomposite. To detect THP, a highly dispersed LV@CNF nanocomposite was modified on a glassy carbon electrode as a sensing substrate. By amperometric technique, the sensor shows a wide linear range of 0.01-1070 & mu;M, low limit of detection (2.63 nM), and sensitivity (0.228 & mu;A & mu;M-1 cm-2). Finally, the current technique was successfully used to identify THP in real food samples (chocolate, coffee and black tea).