Modeling users' heterogeneous taste with diversified attentive user profiles

被引:4
作者
Barkan, Oren [1 ]
Shaked, Tom [2 ]
Fuchs, Yonatan [2 ]
Koenigstein, Noam [3 ]
机构
[1] Open Univ, Dept Comp Sci, Raanana, Israel
[2] Tel Aviv Univ, Dept Elect Engn, Tel Aviv, Israel
[3] Tel Aviv Univ, Dept Ind Engn, Tel Aviv, Israel
基金
以色列科学基金会;
关键词
Recommender systems; Collaborative filtering; Attention-based models; Diversity; Explainable recommendations; User profiles; MATRIX FACTORIZATION; ACCURACY;
D O I
10.1007/s11257-023-09376-9
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Two important challenges in recommender systems are modeling users with heterogeneous taste and providing explainable recommendations. In order to improve our understanding of the users in light of these challenges, we developed the attentive multi-persona collaborative filtering (AMP-CF) model. AMP-CF breaks down the user representation into several latent "personas" (profiles) that identify and discern a user's tastes and inclinations. Then, the exposed personas are used to generate, explain, and diversify the recommendation list. As such, AMP-CF offers a unified solution for both aforementioned challenges. We demonstrate AMP-CF on four collaborative filtering datasets from the domains of movies, music, and video games. We show that AMP-CF is competitive with state-of-the-art models in terms of accuracy while providing additional insights for explanations and diversification.
引用
收藏
页码:375 / 405
页数:31
相关论文
共 110 条
  • [1] Agarwal D, 2009, KDD-09: 15TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P19
  • [2] Aggarwal C. C., 2016, Recommender Systems: The Textbook, P29, DOI [DOI 10.1007/978-3-319-29659-3_2, 10.1007/978-3-319-29659-3_2#citeas]
  • [3] [Anonymous], 2007, SIGKDD Explor. Newsl., DOI DOI 10.1145/1345448.1345465
  • [4] [Anonymous], 2016, P 1 WORKSH DEEP LEAR
  • [5] Barkan O., 2016, MODELLING SESSION AC
  • [6] Anchor-based Collaborative Filtering
    Barkan, Oren
    Hirsch, Roy
    Katz, Ori
    Caciularu, Avi
    Koenigstein, Noam
    [J]. PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 2877 - 2881
  • [7] Grad-SAM: Explaining Transformers via Gradient Self-Attention Maps
    Barkan, Oren
    Hauon, Edan
    Caciularu, Avi
    Katz, Ori
    Malkiel, Itzik
    Armstrong, Omri
    Koenigstein, Noam
    [J]. PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 2882 - 2887
  • [8] Representation Learning via Variational Bayesian Networks
    Barkan, Oren
    Caciularu, Avi
    Rejwan, Idan
    Katz, Ori
    Weill, Jonathan
    Malkiel, Itzik
    Koenigstein, Noam
    [J]. PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 78 - 88
  • [9] GAM: Explainable Visual Similarity and Classification via Gradient Activation Maps
    Barkan, Oren
    Armstrong, Omri
    Hertz, Amir
    Caciularu, Avi
    Katz, Ori
    Malkiel, Itzik
    Koenigstein, Noam
    [J]. PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 68 - 77
  • [10] Cold Item Integration in Deep Hybrid Recommenders via Tunable Stochastic Gates
    Barkan, Oren
    Hirsch, Roy
    Katz, Ori
    Caciularu, Avi
    Weill, Jonathan
    Koenigstein, Noam
    [J]. 2021 21ST IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2021), 2021, : 994 - 999