Investigation of multi-fingers drain field plate in dual-threshold coupling AlGaN/GaN high electron mobility transistors for optimizing linearity at high electrical fields in the Ka band

被引:1
作者
Wang, Pengfei [1 ]
Mi, Minhan [1 ]
Chen, Yilin [2 ]
An, Sirui [1 ]
Zhou, Yuwei [2 ]
Zhou, Jiuding [1 ]
Zhao, Ziyue [1 ]
Zhu, Qing [1 ]
Du, Xiang [1 ]
Gong, Can [1 ]
Li, Ming [3 ]
Ma, Xiaohua [1 ]
Hao, Yue [1 ]
机构
[1] Xidian Univ, Sch Microelect, State Key Discipline Lab Wide Bandgap Semicond Tec, Xian 710071, Peoples R China
[2] Xidian Univ, Sch Adv Mat & Nanotechnol, Xian 710071, Peoples R China
[3] Nanjing Elect Devices Inst, Nanjing 210016, Peoples R China
基金
中国国家自然科学基金;
关键词
GaN-high-electron-mobility transistors; linearity; dual-threshold (DT) coupling; multi-fingers drain field plate (MF-DFP); high electric field; HIGH BREAKDOWN VOLTAGE; RESISTANCE; HEMTS; RF;
D O I
10.1088/1361-6641/acd807
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
GaN high electron mobility transistors were fabricated and investigated in detail to improve their linearity at high operating voltage. The scheme of dual-threshold (DT) coupling was adopted to mitigate the transconductance (G (m)) nonlinearity and a multi-fingers drain field plate (MF-DFP) was employed to alleviate the high electric field. The proposed GaN HEMT, integrating the DT technique (DT HEMT) and MF-DFP structure (DT HEMT W/ MF-DFP), yielded a G (m) plateau of & SIM;5.5 V and a & SIM;8 dB improvement in the calculated output third-order intercept point(OIP3) than that of DT HEMT. The load-pull measurements at 30 GHz delivered a peak power-added efficiency (PAE) of 52.5 % at V (ds) = 10 V, and saturation output power density (P (out)) of 5.5 W mm(-1) at V (ds) = 20 V. In comparison with the DT HEMT, the DT HEMT W/ MF-DFP obtained a flatter gain profile, with & SIM;1.5 dB improvement in gain compression at V (ds) = 20 V.
引用
收藏
页数:6
相关论文
共 26 条
[1]  
Angelov I., 2012, IEEE MTT S INT MICRO, P1
[2]  
[Anonymous], 2003, ARTECH MICR
[3]   Graded AlGaN Channel Transistors for Improved Current and Power Gain Linearity [J].
Bajaj, Sanyam ;
Yang, Zhichao ;
Akyol, Fatih ;
Park, Pil Sung ;
Zhang, Yuewei ;
Price, Aimee L. ;
Krishnamoorthy, Sriram ;
Meyer, David J. ;
Rajan, Siddharth .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2017, 64 (08) :3114-3119
[4]  
Chang M Y., 2022, ZTE COMMUN, V22, P2, DOI [10.12142/ZTECOM.202202008, DOI 10.12142/ZTECOM.202202008]
[5]   Intrinsically Linear Transistor for Millimeter-Wave Low Noise Amplifiers [J].
Choi, Woojin ;
Chen, Renjie ;
Levy, Cooper ;
Tanaka, Atsunori ;
Liu, Ren ;
Balasubramanian, Venkatesh ;
Asbeck, Peter M. ;
Dayeh, Shadi A. .
NANO LETTERS, 2020, 20 (04) :2812-2820
[6]   Effect of Optical Phonon Scattering on the Performance of GaN Transistors [J].
Fang, Tian ;
Wang, Ronghua ;
Xing, Huili ;
Rajan, Siddharth ;
Jena, Debdeep .
IEEE ELECTRON DEVICE LETTERS, 2012, 33 (05) :709-711
[7]  
Joglekar Sameer, 2017, 2017 IEEE International Electron Devices Meeting (IEDM), p25.3.1, DOI 10.1109/IEDM.2017.8268457
[8]  
Joshi Rachit, 2021, Proceedings of the 2020 50th European Microwave Conference (EuMC), P1103, DOI 10.23919/EuMC48046.2021.9337963
[9]   Amplified spontaneous emission of phonons as a likely mechanism for density-dependent velocity saturation in GaN transistors [J].
Khurgin, Jacob B. ;
Bajaj, Sanyam ;
Rajan, Siddharth .
APPLIED PHYSICS EXPRESS, 2016, 9 (09)
[10]   Nanowire Channel InAlN/GaN HEMTs With High Linearity of gm and fT [J].
Lee, Dong Seup ;
Wang, Han ;
Hsu, Allen ;
Azize, Mohamed ;
Laboutin, Oleg ;
Cao, Yu ;
Johnson, Jerry Wayne ;
Beam, Edward ;
Ketterson, Andrew ;
Schuette, Michael L. ;
Saunier, Paul ;
Palacios, Tomas .
IEEE ELECTRON DEVICE LETTERS, 2013, 34 (08) :969-971