Computational Fluid Dynamics Simulation and Optimization of Hydropneumatic Spring Damper Valves for Heavy Vehicle Applications

被引:2
|
作者
Nie, Wei [1 ,2 ]
He, Hongwen [1 ]
Sha, Luming [3 ]
Wang, Chao [1 ,2 ]
Du, Fu [1 ,2 ]
机构
[1] Beijing Inst Technol, Sch Mech Engn, Beijing 100081, Peoples R China
[2] China North Vehicle Res Inst, Prop Syst Technol Dept, Beijing 100072, Peoples R China
[3] Jilin Univ, Key Lab Bionic Engn, Minist Educ, Changchun 130022, Peoples R China
关键词
hydropneumatic spring damper valve; fluid-solid coupling analysis; inlet-outlet pressure drop; axial force on a spool; multi-objective optimization; CFD ANALYSIS; FLOW; PERFORMANCE; PARAMETERS;
D O I
10.3390/machines11070680
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
To satisfy the design requirements for a hydropneumatic spring damper valve, the inlet-outlet pressure drop (& UDelta;P) and the axial force on the spool (F-Z) of a valve were investigated using fluid-solid coupling simulations and multi-objective optimization, along with the effects of the diameters of three internal holes (D-A, D-B, and D-C) in the valve on the & UDelta;P and the F-Z. First, a meshed computational fluid dynamics model of a damper valve was established based on its geometric structure. Next, the effects of the flow rate (Q) and the diameter of the damping hole in the internal structure on the & UDelta;P and the F-Z of the damper valve were investigated. The results showed that the & UDelta;P and the F-Z varied nonlinearly with Q. For a given Q, the & UDelta;P decreased as D-A, D-B, and D-C increased. For a given Q, the F-Z was not related to D-A and D-C, but it decreased as D-B increased. Finally, the structure of the damper valve was optimized by defining the & UDelta;P and the F-Z as the response variables and D-A, D-B, and D-C as the explanatory variables. The results showed that the best configuration of the hole diameters was D-A = 8.8 mm, D-B = 5.55 mm, and D-C = 6 mm. In this configuration, & UDelta;P = 0.704 MPa and F-Z = 110.005 N. The & UDelta;P of the optimized valve was closer to the middle value of the target range than that of the initial valve design. The difference between the simulated and target values of the F-Z decreased from 0.28% to 0.0045%, satisfying application requirements.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] An investigation of the indoor environment and its influence on manufacturing applications via computational fluid dynamics simulation
    Liu, Yang
    Mao, Wenbin
    Diaz-Elsayed, Nancy
    BUILDING AND ENVIRONMENT, 2022, 219
  • [22] Computational simulation of fluid dynamics in a tubular stirred reactor
    Cao Xiao-chang
    Zhang Ting-an
    Zhao Qiu-yue
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2009, 19 (02) : 489 - 495
  • [23] Optimization Of Hydrocarbon Ejector Using Computational Fluid Dynamics
    Hadi, Muhammad
    Arshad, Ahsan
    Shaik, Nagoor Basha
    Benjapolakul, Watit
    Gillani, Qandeel Fatima
    ENGINEERING JOURNAL-THAILAND, 2022, 26 (05): : 1 - 11
  • [24] NUMERICAL SIMULATION OF EROSION USING COMPUTATIONAL FLUID DYNAMICS
    Grewal, H. S.
    Singh, H.
    Agrawal, Anupam
    CFD MODELING AND SIMULATION IN MATERIALS PROCESSING, 2012, : 89 - 96
  • [25] Computational fluid dynamics simulation of a stirred tank reactor
    Mittal, Gaurav
    Kikugawa, Rafael Issao
    MATERIALS TODAY-PROCEEDINGS, 2021, 46 : 11015 - 11019
  • [26] Computational fluid dynamics (CFD) simulation on the hydraulics of a spillway
    Damarnegara, Satria
    Wardoyo, Wasis
    Perkins, Richard
    Vincens, Eric
    3RD INTERNATIONAL CONFERENCE OF WATER RESOURCES DEVELOPMENT AND ENVIRONMENTAL PROTECTION, 2020, 437
  • [27] Computational Fluid Dynamics: Insights and Applications in the Pharmaceutical Field
    Singh, Vanshita
    Shah, Kamal
    Garg, Akash
    Dewangan, Hitesh Kumar
    LETTERS IN DRUG DESIGN & DISCOVERY, 2024, 21 (03) : 440 - 450
  • [28] VALIDATION OF COMPUTATIONAL FLUID DYNAMICS MODELS FOR INDUSTRIAL APPLICATIONS
    Dzodzo, Milorad B.
    PROCEEDINGS OF 2021 28TH INTERNATIONAL CONFERENCE ON NUCLEAR ENGINEERING (ICONE28), VOL 3, 2021,
  • [29] Towards computational fluid dynamics applications in brewing process
    Jagiello, Kacper
    Ludwig, Wojciech
    EUROPEAN FOOD RESEARCH AND TECHNOLOGY, 2024, 250 (02) : 361 - 373
  • [30] Multiobjective Optimization of Scramjet Strut Geometry Using Computational Fluid Dynamics Approach
    Pirkandi, Jamasb
    Hashemabadi, Mahdi
    Zakeri, Mahnaz
    JOURNAL OF AEROSPACE ENGINEERING, 2024, 37 (04)