SACA-UNet:Medical Image Segmentation Network Based on Self-Attention and ASPP

被引:1
作者
Fan, Gaojuan [1 ]
Wang, Jie [1 ]
Zhang, Chongsheng [1 ]
机构
[1] Henan Univ, Kaifeng, Peoples R China
来源
2023 IEEE 36TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS, CBMS | 2023年
关键词
Medical image segmentation; Deep Learning; ASPP; Self-Attention mechanism;
D O I
10.1109/CBMS58004.2023.00237
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, deep learning based techniques have been successfully applied to medical image segmentation, which plays an important role in intelligent lesion analysis and disease diagnosis. At present, the mainstream segmentation models are primarily based on the U-Net model for extracting local features through multi-layer convolution, which lacks global information and the multi-scale semantic information interaction between the Encoder and Decoder process, leading to suboptimal segmentation performance. To address such issues, in this work we propose a new medical image segmentation network, namely SACA-UNet, which improves the U-Net model via the self-attention and cross atrous spatial pyramid pooling (CrossASPP) mechanisms. In specific, SACA-UNet first utilizes the selfattention mechanism to capture the global feature, it next devises a Cross-ASPP module to extract and fuse features of varying reception fields to prompt multi-scale semantic interaction. We evaluate the segmentation performance of our proposed model on four benchmark datasets including the ISIC2018, BUSI, CVCClinicDB, and COVID-19 datasets, in terms of both the Dice coefficient and IoU metrics. Experimental results demonstrate that SACA-UNet remarkably outperforms the baseline methods.
引用
收藏
页码:317 / 322
页数:6
相关论文
共 50 条
  • [21] Dual Channel-Spatial Self-Attention Transformer and CNN synergy network for 3D medical image segmentation
    Yang, Fan
    Wang, Bo
    APPLIED SOFT COMPUTING, 2024, 167
  • [22] Evolutionary Attention Network for Medical Image Segmentation
    Hassanzadeh, Tahereh
    Essam, Daryl
    Sarker, Ruhul
    2020 DIGITAL IMAGE COMPUTING: TECHNIQUES AND APPLICATIONS (DICTA), 2020,
  • [23] GLSANet: Global-Local Self-Attention Network for Remote Sensing Image Semantic Segmentation
    Hu, Xudong
    Zhang, Penglin
    Zhang, Qi
    Yuan, Feng
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [24] GLSANet: Global-Local Self-Attention Network for Remote Sensing Image Semantic Segmentation
    Hu, Xudong
    Zhang, Penglin
    Zhang, Qi
    Yuan, Feng
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [25] EMED-UNet: An Efficient Multi-Encoder-Decoder Based UNet for Medical Image Segmentation
    Shah, Kashish D.
    Patel, Dhaval K.
    Thaker, Minesh P.
    Patel, Harsh A.
    Saikia, Manob Jyoti
    Ranger, Bryan J.
    IEEE ACCESS, 2023, 11 : 95253 - 95266
  • [26] SAFE: Unsupervised image feature extraction using self-attention based feature extraction network
    Choi, Yeoung Je
    Lee, Gyeong Taek
    Kim, Chang Ouk
    EXPERT SYSTEMS, 2024, 41 (08)
  • [27] Eye-UNet: a UNet-based network with attention mechanism for low-quality human eye image segmentation
    Yanxia Wang
    Jingyi Wang
    Ping Guo
    Signal, Image and Video Processing, 2023, 17 : 1097 - 1103
  • [28] A feature detection network based on self-attention mechanism for underwater image processing
    Wu, Di
    Su, Boxun
    Hao, Lichao
    Wang, Ye
    Zhang, Liukun
    Yan, Zheping
    OCEAN ENGINEERING, 2024, 311
  • [29] Eye-UNet: a UNet-based network with attention mechanism for low-quality human eye image segmentation
    Wang, Yanxia
    Wang, Jingyi
    Guo, Ping
    SIGNAL IMAGE AND VIDEO PROCESSING, 2023, 17 (04) : 1097 - 1103
  • [30] SN-FPN: Self-Attention Nested Feature Pyramid Network for Digital Pathology Image Segmentation
    Lee, Sanghoon
    Aminul Islam, Kazi
    Chandana Koganti, Sai
    Yaganti, Varshini
    Ramya Sri Mamillapalli, Sai
    Vitalos, Hannah
    Williamson, Drew F. K.
    IEEE ACCESS, 2024, 12 : 92764 - 92773