The deformed modified Korteweg-de Vries equation: Multi-soliton solutions and their interactions

被引:2
|
作者
Kumar, S. Suresh [1 ]
机构
[1] Thiruvalluvar Univ, C Abdul Hakeem Coll Autonomous, PG & Reserarch Dept Math, Ranipet 632509, India
来源
PRAMANA-JOURNAL OF PHYSICS | 2023年 / 97卷 / 03期
关键词
Deformed modified Korteweg-de Vries equation; Hirota's bilinear method; solitons; ION-ACOUSTIC SOLITON; CONSERVATION-LAWS; MKDV EQUATIONS; INTEGRABILITY; WAVES; PROPAGATION; MODELS; TDGL;
D O I
10.1007/s12043-023-02581-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we demonstrate how Hirota's bilinear method can be employed to derive single-soliton, two-soliton and three-soliton solutions of the deformed modified Korteweg-de Vries (KdV) equation. We note that the derived soliton solutions depend on the time-dependent function, revealing that the speed of the soliton solutions no longer explicitly depends on wave amplitude. Finally, we graphically demonstrate the evolution of multi-soliton solutions and their interactions.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] On the stabilization of the Korteweg-de Vries equation
    Komornik, Vilmos
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2010, 28 (02): : 33 - 48
  • [42] Nonautonomous soliton solutions for a nonintegrable Korteweg-de Vries equation with variable coefficients by the variational approach
    Su, Chuan-Qi
    Wang, Yong-Yan
    Qin, Nan
    Li, Jian-Guang
    Zhang, Guo-Dong
    APPLIED MATHEMATICS LETTERS, 2019, 90 : 104 - 109
  • [43] Differential Quadrature Method to Examine the Dynamical Behavior of Soliton Solutions to the Korteweg-de Vries Equation
    Mishra, Shubham
    Arora, Geeta
    Emadifar, Homan
    Sahoo, Soubhagya Kumar
    Ghanizadeh, Afshin
    ADVANCES IN MATHEMATICAL PHYSICS, 2022, 2022
  • [44] Recurrence in the Korteweg-de Vries equation?
    Herbst, Ben
    Nieddu, Garrett
    Trubatch, A. David
    NONLINEAR WAVE EQUATIONS: ANALYTIC AND COMPUTATIONAL TECHNIQUES, 2015, 635 : 1 - 12
  • [45] The Korteweg-de Vries equation on the interval
    Hitzazis, Iasonas
    Tsoubelis, Dimitri
    JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (08)
  • [46] MODIFIED KORTEWEG-DE VRIES EQUATION AS A SYSTEM WITH BENIGN GHOSTS
    Smilga, Andrei
    ACTA POLYTECHNICA, 2022, 62 (01) : 190 - 196
  • [47] The N-soliton solutions for the matrix modified Korteweg-de Vries equation via the Riemann-Hilbert approach
    Chen, Xiaotong
    Zhang, Yi
    Liang, Jianli
    Wang, Rui
    EUROPEAN PHYSICAL JOURNAL PLUS, 2020, 135 (07)
  • [48] Solitary Waves and Their Interactions in the Cylindrical Korteweg-De Vries Equation
    Hu, Wencheng
    Ren, Jingli
    Stepanyants, Yury
    SYMMETRY-BASEL, 2023, 15 (02):
  • [49] Multisymplectic Schemes for the Complex Modified Korteweg-de Vries Equation
    Aydin, A.
    Karasoezen, B.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, 2008, 1048 : 60 - +
  • [50] Interactions of breathers and solitons in the extended Korteweg-de Vries equation
    Chow, KW
    Grimshaw, RHJ
    Ding, E
    WAVE MOTION, 2005, 43 (02) : 158 - 166