The deformed modified Korteweg-de Vries equation: Multi-soliton solutions and their interactions

被引:2
|
作者
Kumar, S. Suresh [1 ]
机构
[1] Thiruvalluvar Univ, C Abdul Hakeem Coll Autonomous, PG & Reserarch Dept Math, Ranipet 632509, India
来源
PRAMANA-JOURNAL OF PHYSICS | 2023年 / 97卷 / 03期
关键词
Deformed modified Korteweg-de Vries equation; Hirota's bilinear method; solitons; ION-ACOUSTIC SOLITON; CONSERVATION-LAWS; MKDV EQUATIONS; INTEGRABILITY; WAVES; PROPAGATION; MODELS; TDGL;
D O I
10.1007/s12043-023-02581-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we demonstrate how Hirota's bilinear method can be employed to derive single-soliton, two-soliton and three-soliton solutions of the deformed modified Korteweg-de Vries (KdV) equation. We note that the derived soliton solutions depend on the time-dependent function, revealing that the speed of the soliton solutions no longer explicitly depends on wave amplitude. Finally, we graphically demonstrate the evolution of multi-soliton solutions and their interactions.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] The deformed modified Korteweg–de Vries equation: Multi-soliton solutions and their interactions
    S Suresh Kumar
    Pramana, 97
  • [2] Solutions to the modified Korteweg-de Vries equation
    Zhang, Da-Jun
    Zhao, Song-Lin
    Sun, Ying-Ying
    Zhou, Jing
    REVIEWS IN MATHEMATICAL PHYSICS, 2014, 26 (07)
  • [3] An extended Korteweg-de Vries equation: multi-soliton solutions and conservation laws
    Yildirim, Yakup
    Yasar, Emrullah
    NONLINEAR DYNAMICS, 2017, 90 (03) : 1571 - 1579
  • [4] An extended Korteweg–de Vries equation: multi-soliton solutions and conservation laws
    Yakup Yıldırım
    Emrullah Yaşar
    Nonlinear Dynamics, 2017, 90 : 1571 - 1579
  • [5] Soliton interactions with an external forcing: The modified Korteweg-de Vries framework
    Flamarion, Marcelo V.
    Pelinovsky, Efim
    CHAOS SOLITONS & FRACTALS, 2022, 165
  • [7] Periodic and rational solutions of variable-coefficient modified Korteweg-de Vries equation
    Pal, Ritu
    Kaur, Harleen
    Raju, Thokala Soloman
    Kumar, C. N.
    NONLINEAR DYNAMICS, 2017, 89 (01) : 617 - 622
  • [8] On a nonlocal modified Korteweg-de Vries equation: Integrability, Darboux transformation and soliton solutions
    Ji, Jia-Liang
    Zhu, Zuo-Nong
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 42 : 699 - 708
  • [9] Soliton management for a variable-coefficient modified Korteweg-de Vries equation
    Sun, Zhi-Yuan
    Gao, Yi-Tian
    Liu, Ying
    Yu, Xin
    PHYSICAL REVIEW E, 2011, 84 (02):
  • [10] Numerical simulation of the soliton solutions for a complex modified Korteweg-de Vries equation by a finite difference method
    Xu, Tao
    Zhang, Guowei
    Wang, Liqun
    Xu, Xiangmin
    Li, Min
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2021, 73 (02)