Dilates of shift-invariant spaces on local fields

被引:0
作者
Behera, Biswaranjan [1 ]
机构
[1] Indian Stat Inst, Stat & Math Unit, 203 BT Rd, Kolkata 700108, India
来源
PUBLICATIONES MATHEMATICAE DEBRECEN | 2023年 / 102卷 / 3-4期
关键词
shift-invariant spaces; local fields; frames; Bessel systems; Parseval wavelet; generalized MRA; space of negative dilates; MULTIRESOLUTION ANALYSIS; CONSTRUCTION; WAVELETS; SYSTEMS;
D O I
10.5486/PMD.2023.9271
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K be a local field of positive characteristic. We prove that if the space V of negative dilates of a Parseval wavelet of L2(K) has dimension function finite on a set of positive measure, then the intersection of the dilates of V is trivial. We also construct an example of a frame wavelet of L2(K) whose space of negative dilates is all of L2(K). The frame wavelet can be chosen to have frame bounds arbitrarily close to 1 and it has a dual frame wavelet.
引用
收藏
页码:261 / 284
页数:24
相关论文
共 23 条
[1]  
[Anonymous], 1999, Fourier Analysis on Number Fields
[2]   Generalized multi-resolution analyses and a construction procedure for all wavelet sets in Rn [J].
Baggett, LW ;
Medina, HA ;
Merrill, KD .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 1999, 5 (06) :563-573
[3]   Shift-invariant subspaces and wavelets on local fields [J].
Behera, B. .
ACTA MATHEMATICA HUNGARICA, 2016, 148 (01) :157-173
[4]   Wavelet Sets and Scaling Sets in Local Fields [J].
Behera, Biswaranjan .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2021, 27 (05)
[5]   Characterization of wavelets and MRA wavelets on local fields of positive characteristic [J].
Behera, Biswaranjan ;
Jahan, Qaiser .
COLLECTANEA MATHEMATICA, 2015, 66 (01) :33-53
[6]   Multiresolution analysis on local fields and characterization of scaling functions [J].
Behera, Biswaranjan ;
Jahan, Qaiser .
ADVANCES IN PURE AND APPLIED MATHEMATICS, 2012, 3 (02) :181-202
[7]   A wavelet theory for local fields and related groups [J].
Benedetto, JJ ;
Benedetto, RL .
JOURNAL OF GEOMETRIC ANALYSIS, 2004, 14 (03) :423-456
[8]   On the existence of multiresolution analysis for framelets [J].
Bownik, M ;
Rzeszotnik, Z .
MATHEMATISCHE ANNALEN, 2005, 332 (04) :705-720
[9]  
Bownik M, 2009, P AM MATH SOC, V137, P563
[10]  
Bownik M, 2007, MATH RES LETT, V14, P285