Design and Analysis of 2 DOF (Degree Of Freedom) Tracker Control and Mirror Light Reflection of Photovoltaic System

被引:0
作者
Sulistyowati, Riny [1 ]
Hede, Kevin Brayen Williams [1 ]
机构
[1] Inst Teknol Adhi Tama Surabaya, Dept Elect Engn, Arief Rahman Hakim 100, Surabaya 60117, Indonesia
来源
PRZEGLAD ELEKTROTECHNICZNY | 2023年 / 99卷 / 06期
关键词
Solar Tracker; Photovoltaic; Degrees Of Freedom (DOF); Mirror Light Reflection; COMPREHENSIVE PHOTONIC APPROACH; OPERATING TEMPERATURE; MODULES; OPTIMIZATION; PERFORMANCE; MODEL;
D O I
10.15199/48.2023.06.34
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Solar Panel is an electrical energy source with a very clean operation, less maintenance , without emission. Recently, many researchers have been experimenting with the solar tracker to be able to optimize solar radiation absorption. For that, a solar tracker control system device using 2 Degrees Of Freedom is developed. Using this device, the photovoltaic panel is expected to be perpendicular to the sun, so the panel will be moved each time depending on the sun's position so the result will be much more precise toward the direction of the sun. The purpose of the paper is to design a device consisting of mechanical, program, , electrical design. Based on the test results, it can be concluded that the solar tracker control system with 2 DOF works according to the design. The system using mirror reflection can produce output power from the photovoltaic panel up to 1,75% more than the result produced by static condition of the photovoltaic panel with output power up to 1,43% and also the result of solar tracker control system with 2 DOF (Degrees Of Freedom) without a mirror that produces output power up to 1,73%.
引用
收藏
页码:162 / 166
页数:5
相关论文
共 27 条
  • [1] Effects of evaporative cooling on efficiency of photovoltaic modules
    Alami, Abdul Hai
    [J]. ENERGY CONVERSION AND MANAGEMENT, 2014, 77 : 668 - 679
  • [2] Radiative cooling of solar cells: opto-electro-thermal physics and modeling
    An, Yidan
    Sheng, Chunxiang
    Li, Xiaofeng
    [J]. NANOSCALE, 2019, 11 (36) : 17073 - 17083
  • [3] [Anonymous], 2017, PHYS ENG
  • [4] Performance evaluation of a PV (photovoltaic) module by back surface water cooling for hot climatic conditions
    Bahaidarah, H.
    Subhan, Abdul
    Gandhidasan, P.
    Rehman, S.
    [J]. ENERGY, 2013, 59 : 445 - 453
  • [5] Assessment of Bifacial Photovoltaic Module Power Rating Methodologies-Inside and Out
    Deline, Chris
    MacAlpine, Sara
    Marion, Bill
    Toor, Fatima
    Asgharzadeh, Amir
    Stein, Joshua S.
    [J]. IEEE JOURNAL OF PHOTOVOLTAICS, 2017, 7 (02): : 575 - 580
  • [6] PERC plus : industrial PERC solar cells with rear Al grid enabling bifaciality and reduced Al paste consumption
    Dullweber, Thorsten
    Kranz, Christopher
    Peibst, Robby
    Baumann, Ulrike
    Hannebauer, Helge
    Fuelle, Alexander
    Steckemetz, Stefan
    Weber, Torsten
    Kutzer, Martin
    Mueller, Matthias
    Fischer, Gerd
    Palinginis, Phedon
    Neuhaus, Holger
    [J]. PROGRESS IN PHOTOVOLTAICS, 2016, 24 (12): : 1487 - 1498
  • [7] Cooling concentrator photovoltaic systems using various configurations of phase-change material heat sinks
    Emam, Mohamed
    Ahmed, Mahmoud
    [J]. ENERGY CONVERSION AND MANAGEMENT, 2018, 158 : 298 - 314
  • [8] Is enhanced radiative cooling of solar cell modules worth pursuing?
    Gentle, A. R.
    Smith, G. B.
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2016, 150 : 39 - 42
  • [9] Parameterized transmittance model for direct beam and circumsolar spectral irradiance
    Gueymard, CA
    [J]. SOLAR ENERGY, 2001, 71 (05) : 325 - 346
  • [10] Temperature effects of bifacial modules: Hotter or cooler?
    Lamers, M. W. P. E.
    Ozkalay, E.
    Gali, R. S. R.
    Janssen, G. J. M.
    Weeber, A. W.
    Romijn, I. G.
    Van Aken, B. B.
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2018, 185 : 192 - 197