A Bayesian adaptive design for dual-agent phase I-II oncology trials integrating efficacy data across stages

被引:0
作者
Jimenez, Jose L. [1 ,3 ]
Zheng, Haiyan [2 ]
机构
[1] Novartis Pharma AG, Global Drug Dev, Basel, Switzerland
[2] Univ Cambridge, MRC Biostat Unit, Cambridge, England
[3] Fabrikstr 2, CH-4056 Basel, Switzerland
关键词
drug combination; information borrowing; meta-analytic-combined; phase I-II; seamless designs; DOSE-FINDING DESIGN; CLINICAL-TRIALS; ESCALATION; COMBINATIONS;
D O I
10.1002/bimj.202200288
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Combination of several anticancer treatments has typically been presumed to have enhanced drug activity. Motivated by a real clinical trial, this paper considers phase I-II dose finding designs for dual-agent combinations, where one main objective is to characterize both the toxicity and efficacy profiles. We propose a two-stage Bayesian adaptive design that accommodates a change of patient population in-between. In stage I, we estimate a maximum tolerated dose combination using the escalation with overdose control (EWOC) principle. This is followed by a stage II, conducted in a new yet relevant patient population, to find the most efficacious dose combination. We implement a robust Bayesian hierarchical random-effects model to allow sharing of information on the efficacy across stages, assuming that the related parameters are either exchangeable or nonexchangeable. Under the assumption of exchangeability, a random-effects distribution is specified for the main effects parameters to capture uncertainty about the between-stage differences. The inclusion of nonexchangeability assumption further enables that the stage-specific efficacy parameters have their own priors. The proposed methodology is assessed with an extensive simulation study. Our results suggest a general improvement of the operating characteristics for the efficacy assessment, under a conservative assumption about the exchangeability of the parameters a priori.
引用
收藏
页数:15
相关论文
共 29 条