Fractional Weighted Midpoint-Type Inequalities for s-Convex Functions

被引:7
作者
Nasri, Nassima [1 ]
Aissaoui, Fatima [2 ]
Bouhali, Keltoum [1 ,3 ]
Frioui, Assia [2 ]
Meftah, Badreddine [2 ]
Zennir, Khaled [3 ]
Radwan, Taha [3 ,4 ]
机构
[1] Univ 20 Aout 1955, Dept Math, Skikda Bp 26 Route El Hadaiek, Skikda 21000, Algeria
[2] Univ 8 Mai 1945 Guelma, Fac Math Informat & Sci Matiere, Dept Math, Guelma 24000, Algeria
[3] Qassim Univ, Coll Sci & Arts, Dept Math, Ar Rass 51452, Saudi Arabia
[4] Port Said Univ, Fac Management Technol & Informat Syst, Dept Math & Stat, Port Said 42511, Egypt
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 03期
关键词
fractional derivatives; weighted integral; midpoint formula; integral inequalities; s-convex functions; DIFFERENTIABLE MAPPINGS; HERMITE;
D O I
10.3390/sym15030612
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In the present paper, we first prove a new integral identity. Using that identity, we establish some fractional weighted midpoint-type inequalities for functions whose first derivatives are extended s-convex. Some special cases are discussed. Finally, to prove the effectiveness of our main results, we provide some applications to numerical integration as well as special means.
引用
收藏
页数:19
相关论文
共 28 条
[1]   Some weighted integral inequalities for differentiable beta-convex functions [J].
Azzouza, N. ;
Meftah, B. .
JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2022, 25 (02) :373-393
[2]  
Dragomir S. S., 1995, Soochow J. Math., V21, P335
[3]   Dynamics and bifurcations of a discrete-time Lotka-Volterra model using nonstandard finite difference discretization method [J].
Eskandari, Zohreh ;
Avazzadeh, Zakieh ;
Ghaziani, Reza Khoshsiar ;
Li, Bo .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022,
[4]  
Gorenflo R., 1997, Fractional Calculus: Integral and Differential Equations of Fractional Order in Fractals Fractional Calculus in Continuum Mechanics
[5]  
Kaijser S, 2005, MATH INEQUAL APPL, V8, P403
[6]   Weighted Midpoint Hermite-Hadamard-Fejer Type Inequalities in Fractional Calculus for Harmonically Convex Functions [J].
Kalsoom, Humaira ;
Vivas-Cortez, Miguel ;
Amer Latif, Muhammad ;
Ahmad, Hijaz .
FRACTAL AND FRACTIONAL, 2021, 5 (04)
[7]   Fractional Simpson like type inequalities for differentiable s-convex functions [J].
Kamouche, N. ;
Ghomrani, S. ;
Meftah, B. .
JOURNAL OF APPLIED MATHEMATICS STATISTICS AND INFORMATICS, 2022, 18 (01) :73-91
[8]  
Kashuri A., 2020, J. Fract. Calc. Nonlin. Syst., V1, P75, DOI [10.48185/jfcns.v1i1.150, DOI 10.48185/JFCNS.V1I1.150]
[9]   Fractional Weighted Ostrowski-Type Inequalities and Their Applications [J].
Kashuri, Artion ;
Meftah, Badreddine ;
Mohammed, Pshtiwan Othman ;
Lupas, Alina Alb ;
Abdalla, Bahaaeldin ;
Hamed, Y. S. ;
Abdeljawad, Thabet .
SYMMETRY-BASEL, 2021, 13 (06)
[10]   Some Properties of Fractional Boas Transforms of Wavelets [J].
Khanna, Nikhil ;
Zothansanga, A. ;
Kaushik, S. K. ;
Kumar, Dilip .
JOURNAL OF MATHEMATICS, 2021, 2021